#Puzzle: What if I told you that the North Pole isn't the only place on Earth from which you can walk 1km due south, turn and walk 1km due east, turn again and walk 1km due north and find yourself back where you started? Where is this other mysterious place? Or places? How many?
There's an old riddle about this. An explorer walks 1km S + 1km E + 1km N, gets back to the starting point and sees a bear. What colour is the bear? The standard answer is white, because the North Pole has this property. The journey would look something like this (not to scale).
Solution. Take any point on a circle of latitude from which going 1km S lands you on a circle of latitude with circumference 1/M km (M=1,2,3,..). Then go around that smaller circle M times due east. Finally, go 1km N and you're back where you started. (Image not to scale.)
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Earlier this year a friend* and I've solved a long-standing problem which, in part, meant finding the eigenvectors of this matrix. In this thread, I'll review our result and bits of 170 years of history
*J.F. van Diejen, Talca
1/n
The title of our paper is "Elliptic Kac–Sylvester Matrix from Difference Lamé Equation" and it was recently published in the mathematical physics journal Annales Henri Poincaré.
Just to "name-drop" some of the characters that will appear in the story: Sylvester (duh), Jacobi, Boltzmann, two Ehrenfests, Schrödinger and Kac (obvs).
(I'll expand the thread over several days so please be patient.)
3/n
"Here's a photo of my boy, Peter. He doesn't yet know what the continuum is, but he doesn't know what fascism is either." - George Szekeres' message to Paul Erdős.
Peter Szekeres was born in Shanghai, where his parents George Szekeres and Esther Klein escaped from Nazi persecution in 1938.
Happy Ending Theorem: any set of five points in the plane in general position has a subset of four points that form the vertices of a convex quadrilateral.
Erdős gave this name to the theorem, because it led to the marriage of Szekeres and Klein
As a run-up to the "Introduction to Integrability" series (see my pinned tweet), I decided to share some interesting bits from the history of integrable systems.
Let's start at the beginning, shall we? So Newton...
#1 It all started with Newton solving the gravitational 2-body problem and deriving Kepler's laws of planetary motion as a result. I would argue that this was possible, because the Kepler problem is (super)integrable. [1/2]
This roughly means that there are many conversed physical quantities like energy, angular momentum, and the Laplace-Runge-Lenz vector. These conservation laws restrict the motion and allow for explicit analytic solutions of otherwise difficult equations. [2/2]