My Authors
Read all threads
Of all the videos I've made, one of my favorites topics to have covered was a proof of the inscribed rectangle problem by H. Vaughan using a Mobius strip.

But now there's a new result!
@QuantaMagazine recently did a great article about recent work by Greene and Lobb using a beefed-up version of the same idea, letting a Mobius strip encode geometric properties of the curve to solve a more general result, check it out:

quantamagazine.org/new-geometric-…
From recent comments on the video above, it looks there's a little confusion where some people thought this means the inscribed square problem (i.e. the Toeplitz conjecture) has been solved, but that's not quite the case.
We've known since 1916, thanks to A. Emch, that inscribed squares always exist in smooth curves. The challenge is curves that aren't piecewise smooth (think fractals), where things like the limiting behavior on the slope of two nearby points is not in your control.
What Greene and Lobb proved was a more general result in the case of smooth (Jordan) curves saying that not only are there squares (which was known), but there are rectangles of any particular shape.
Missing some Tweet in this thread? You can try to force a refresh.

Keep Current with Grant Sanderson

Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

Twitter may remove this content at anytime, convert it as a PDF, save and print for later use!

Try unrolling a thread yourself!

how to unroll video

1) Follow Thread Reader App on Twitter so you can easily mention us!

2) Go to a Twitter thread (series of Tweets by the same owner) and mention us with a keyword "unroll" @threadreaderapp unroll

You can practice here first or read more on our help page!

Follow Us on Twitter!

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3.00/month or $30.00/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!