I'm seeing more and more suggestions that groups at low risk of COVID-19 should go back to normal while high risk groups are protected. What would the logical implications of this be? 1/
First, let's pick an example definition of risk. If we use infection fatality risk alone for simplicity (which of course isn't only measure of severity), there is a clear age pattern, which rises above ~0.1% around age 50 and above ~1% around age 70 (medrxiv.org/content/10.110…) 2/
Suppose hypothetically we define the over 65 age group as 'high risk'. That's about 18% of the UK population, and doesn't include others with health conditions that put them at more at risk of severe COVID. 3/
The question, therefore, would be how to prevent any large outbreak among 'low risk' groups from spreading into 'high risk' ones without shutting these risk groups out of society for several months or more (if that were even feasible). 4/
There have been attempts to have 'shielding' of risk groups (either explicitly or implicitly) in many countries. But large epidemics have still tended to result in infection in these groups, because not all transmission routes were prevented. 5/
For context, here's data on pre-COVID social contacts between different age groups in UK outside home/work/school (from: medrxiv.org/content/10.110…). Dashed box shows over 65s reporting contacts with under 65s. 6/
So in this hypothetical example, how to prevent contacts in the box from spreading infection into the over 65s? Removing interactions in that box would be removing a large part of people's lives, but could the contacts be made less risky? 7/
One option would be to use rapid testing to make sure that these contacts are not infectious, e.g. testing attendees ahead of events/venues/gatherings. But remember, 18% of population are over 65, so that's a lot of (low risk) contacts who would need to be tested regularly. 8/
Then there's the question of what happens if contacts are positive... Would they need to self-isolate? People might well do anyway if they knew they're infected, which could reduce wider transmission... 9/
Depending on what % of population is defined as at high risk, and how many contacts are tested regularly and isolate, could well get a situation where measures reduce transmission in the low risk groups too, leading to a low reproduction number. 10/
If this were to happen, it may become equivalent to a light-touch suppression approach via mass testing:
This thread obviously just picks a hypothetical example. But hopefully it shows it's important to explore the logical implications of a particular scenario, because it won't necessarily lead where we might initially assume. 13/13
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Good piece on the value of digital contact tracing in future pandemics by @marcelsalathe – combined with better linkage to venues of transmission (e.g. superspreading events), potential for a lot of impact here. 1/nature.com/articles/d4158…
During COVID, countries were competing with an exponential process, which meant any individual targeted intervention (like testing, isolation and contact tracing) had to be able to scale easily. Some places understood this more than others... 2/
There seemed to be a lot of media hostility to the idea of contact tracing apps at the time (e.g. below from Sep 2020), perhaps fueled mistrust of social media companies, Cambridge Analytica etc... 3/
It's remakable some people are still claiming COVID had a 'susceptible-infected-recovered-susceptible' dynamic early on, i.e. claiming most in UK got it in 1st wave and 2nd wave was driven by reinfections. Let's look at the heroic assumptions that this claim requires... 1/
1. Assumes first waves declined not because of reduction in contacts, but because of lots of infections and resulting strong immunising responses - and yet these widespread strong immune responses somehow weren't detectable on any antibody test. 2/
2. Assumes the similarity between transmission patterns estimated from social contact patterns in mid-2020 (like CoMix in UK) and transmission estimated from community infection data (e.g. REACT/ONS) is just a massive coincidence. 3/
I recently gave a talk at @JuniperConsort1 outlining some of the work we've been doing in @Epiverse_TRACE with @DataDotOrg and a range of collaborators to try and improve software tools for epidemic response - and how others can contribute to these collective efforts... 1/
As a motivation, I asked the question 'What could the final size of an epidemic be?' - as a first pass, there's a relatively simple method we could use based on an SIR model, but even implementing this can be complicated... 2/
As well as solving the above equation numerically, there are several steps we need to get to this point, from wrangling and cleaning data to estimate R0, to incorporating social contact data. 3/
Why it makes no sense to use total overall COVID deaths as the comparison metric when evaluating the impact of COVID measures, and why we need to focus on transmission dynamics instead. A thread… 1/
Suppose we have two countries, A and B. Country A adopts a lighter touch strategy X early on that gets the reproduction number down to 1 (i.e. epidemic remains flat). Country B leaves it later, then adopts a more stringent strategy Y to bring epidemic down (i.e. R below 1)… 2/
If we did a simple naive comparison of total deaths vs measures introduced, we’d conclude that strategy X (the lighter touch one) is linked with fewer deaths than the more stringent one…. 3/
In the past year, @LSHTM_CEPR has (co-)hosted events on a range of epidemic topics, from public trust and global treaties to analytics software and response strategies.
In case you missed them, here are few to catch up on…
Vernon Lee on Experience, evidence and some intuition in responding to COVID-19 in Singapore: lshtm.ac.uk/newsevents/eve…
Our inaugural research showcase, including Rosanna Peeling on diagnostics, Heidi Larson on vaccine confidence and Thom Banks on public health response: lshtm.ac.uk/newsevents/eve…
There's something a eerily familiar about todays' 'new' IEA report on lockdowns, right down to the text, tables, and half-baked methods. And, of course, the massive estimated effect of masks that somehow hasn't made it into the headlines... 1/
Lots has been written already about this issues with this analysis (e.g. above thread and factcheck.org/2022/03/sciche…), from a lack of accounting for epidemic dynamics to performing a 'meta-analysis' on datasets that aren't independent... 2/
It's a shame, because understanding impact of different NPIs is important - albeit difficult - question. Some studies have made sensible effort at untangling, finding that limiting gatherings and settings of gatherings probably had biggest impact (e.g. nature.com/articles/s4146…) 3/