Santiago Profile picture
Oct 3, 2020 8 tweets 3 min read Read on X
27 lessons in Machine Learning for Computer Vision. ~5 minutes each.

For free!

In a month from today, your future might look very different!

Here are the important details: 🧵👇
I'll go through the lessons myself. One every day, and I'll report my progress using the #MLU hashtag.

This is the first lesson, so welcome to Day 1 of #MLU! Feel free to follow along.

👇
Amazon decided to create a YouTube channel full of Machine Learning content from its internal "ML University."

Available to everyone!

I'm taking the Computer Vision course. Most lessons are around 5 minutes (with a few exceptions.)

Channel: youtube.com/channel/UC12Lq…

👇
As of today, the channel contains videos for three different courses:

▫️Computer Vision
▫️Natural Language Processing
▫️Tabular Data

I'm starting with Computer Vision.

👇
Day 1 of #MLU goes over the topics that will be covered during the course:

▫️Intro to ML and CV
▫️Training Neural Networks and CNNs
▫️Classic CNN architectures
▫️Project: Image classification
▫️Object detection
▫️Semantic segmentation
▫️Transfer learning and AutoML

👇
By the end of the course, you'll have:

▫️Fundamental understanding of ML
▫️Practical knowledge of Computer Vision

Specifically:

▫️Data preprocessing
▫️Common ML algorithms
▫️How to evaluate a model
▫️Model training
▫️Common CV applications

👇
Something really cool: you'll get some hands-on with Amazon SageMaker, which is @awscloud's environment to build and deploy Machine Learning applications.

I spend a lot of time every day using SageMaker. It's pretty cool! You won't want to miss this.

👇
How much can you get out of 5 minutes every day?

I'll find out and I'll let you know.

But you don't have to wait and you can join me now.

Let's do this!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Santiago

Santiago Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @svpino

Oct 1
My new soon-to-be Linux laptop right before I start assembling it. Image
RAM and SSD are now installed. Took me 1 minute and I didn’t even read the manual. Image
The packaging is very nice. A lot of cardboard. This thing comes well protected.

Mostly, frustration-free packaging. Reminiscent of Apple’s boxes. Image
Read 13 tweets
Sep 16
How can you build a good understanding of math for machine learning?

Here is a complete roadmap for you.

In essence, three fields make this up:

• Calculus
• Linear algebra
• Probability theory

Let's take a quick look at them! Image
This thread is courtesy of @TivadarDanka.

3 years ago, he started writing a book about the mathematics of Machine Learning.

It's the best book you'll ever read:



Nobody explains complex ideas like he does.tivadardanka.com/books/mathemat…
1. Linear algebra.

In machine learning, data is represented by vectors. Essentially, training a learning algorithm is finding more descriptive representations of data through a series of transformations.

Linear algebra is the study of vector spaces and their transformations. Image
Read 9 tweets
Aug 12
The single most undervalued fact of linear algebra:

Matrices are graphs, and graphs are matrices.

Encoding matrices as graphs is a cheat code, making complex behavior simple to study.

Let me show you how! Image
By the way, this thread is courtesy of @TivadarDanka. He allowed me to republish it.

3 years ago, he started writing a book about the mathematics of Machine Learning.

It's the best book you'll ever read:



Nobody explains complex ideas like he does.tivadardanka.com/books/mathemat…
If you look at this example, you probably figured out the rule.

Each row is a node, and each element represents a directed and weighted edge. We omit any edges of zero elements.

The element in the 𝑖-th row and 𝑗-th column corresponds to an edge going from 𝑖 to 𝑗. Image
Read 18 tweets
Jul 12
A common fallacy:

If it's raining, the sidewalk is wet. But if the sidewalk is wet, is it raining?

Reversing the implication is called "affirming the consequent." We usually fall for this.

But surprisingly, it's not entirely wrong!

Let's explain it using Bayes Theorem:

1/10 Image
This explanation is courtesy of @TivadarDanka. He allowed me to republish it.

He is writing a book about the mathematics of Machine Learning. It's the best book I've read:



Nobody explains complex ideas like he does.

2/10tivadardanka.com/books/mathemat…
We call propositions of the form "if A, then B" implications.

We write them as "A → B," and they form the bulk of our scientific knowledge.

For example:

"If X is a closed system, then the entropy of X cannot decrease" is the second law of thermodynamics.

3/10
Read 10 tweets
Jun 12
Some of the skills you need to start building AI applications:

• Python and SQL
• Transformer and diffusion models
• LLMs and fine-tuning
• Retrieval Augmented Generation
• Vector databases

Here is one of the most comprehensive programs that you'll find online:
"Generative AI for Software Developers" is a 4-month online course.

It's a 5 to 10-hour weekly commitment, but you can dedicate as much time as you want to finish early.

Here is the link to the program:

I also have a PDF with the syllabus:bit.ly/4aNOJdy


I'm a huge fan of online education, but most of it is all over the place and mostly theoretical.

This program is different:

You'll work on 4 different hands-on projects. You'll learn practical skills you can use at the office right away.cdn.sanity.io/files/tlr8oxjg…
Read 6 tweets
Jun 10
There's a stunning, simple explanation behind matrix multiplication.

This is the first time this clicked on my brain, and it will be the best thing you read all week.

Here is a breakdown of the most crucial idea behind modern machine learning:

1/15 Image
This explanation is courtesy of @TivadarDanka. He allowed me to republish it

3 years ago, he started writing a book about the mathematics of Machine Learning.

It's the best book you'll ever read:



Nobody explains complex ideas like he does.

2/15tivadardanka.com/books/mathemat…
Let's start with the raw definition of the product of A and B.

This looks horrible and complicated.

Let's unwrap it step by step.

3/15 Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(