We run HMC on hundreds of TPU devices for millions of training epochs to provide our best approximation of the true Bayesian neural networks! (1) BNNs do better than deep ensembles (2) no cold posteriors effect but (3) BNNs are terrible under data corruption, and much more! 🧵
First, we find that BNNs at temperature 1 with regular Gaussian priors are actually quite good, outperforming deep ensembles on both accuracy and likelihood!
In fact, tempering even hurts the performance in some cases, with the best performance achieved at temperature 1. What is the main difference with arxiv.org/abs/2002.02405? (1) We turn data augmentation off and (2) we use a very high fidelity inference procedure.
What about the priors? We compare several prior families and study the dependence on prior variance with Gaussian priors. Generally, the effect on performance is fairly minor.
We also compare the predictions of popular approximate inference methods to HMC. Advanced SGMCMC methods provide the most accurate approximation, deep ensembles are quite good even though often considered non-Bayesian, and mean field VI is the worst.
There is also a negative result: Bayesian neural nets seem to generalize very poorly to corrupted data! An ensemble of 720 HMC samples is worse than a single SGD solution when the inputs are noisy or corrupted.
Another cool result: a single long HMC chain appears to be quite good at exploring the posterior, at least in the function space. The results hint that MCMC methods are able to leverage mode connectivity to move between functionally diverse solutions.
We are going to release our JAX code and the HMC samples very soon. Stay tuned!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Spurious features are a major issue for deep learning. Our new #NeurIPS2022 paper w/ @pol_kirichenko, @gruver_nate and @andrewgwils explores the representations trained on data with spurious features with many surprising findings, and SOTA results.
We use Deep Feature Reweighting (DFR) to evaluate feature representations: retrain the last layer of the model on group-balanced validation data. DFR worst group accuracy (WGA) tells us how much information about the core features is learned.
While group robustness methods such as group DRO can improve WGA a lot, they don’t typically improve the features! With DFR, we recover the same performance for ERM and Group DRO. The improvement in these methods comes from the last layer, not features!