Lucas Nestler Profile picture
Jul 27, 2021 7 tweets 4 min read Read on X
Finally, someone did it.
MoE + Weight sharing.
This is amazing.

WideNet finds a way to combine two time-parameter tradeoffs to reduce the final training time and parameter count.
With fewer parameters, layers, and lower training time, they achieve a 3.2% (relative) lower top-1 error.
Their experiments also illustrate that ViT by itself can learn with weight sharing, which is incredibly exciting.
ALBERT (arxiv.org/abs/1909.11942) proposed the same thing for language models two years ago and found that adding weight sharing reduces parameter (and with that memory) consumption significantly but makes the model slower train.
Just like WideNet, they don't share LayerNorm
WideNet investigated the same thing by checking whether MoE helps, and if so, how much.
The unexpected thing here is that WideNet-L performs better with parameter sharing. This could be because of the cleaner and stronger gradients for each expert.
To validate this hypothesis, they "group" the experts and found that gating to the same tokens for 6 blocks (2 groups) overfits much more than calculating a new gating at every block, indicating that these additional gatings are what gives this model its additional performance.
They also tested varying the number of experts in MoE and found similar things to MAT.
Adding experts (while keeping all other parameters the same) increases overfitting and reduces the evaluation performance.
Perhaps we have to use Attention-MoE?
TL;DR: WideNet illustrates very well that MoE has both gradient and overfitting issues which can be improved by adding weight sharing.
Considering its curve, I'm unsure if Switch, with that NLP, has these problems at 1M tokens/step as WideNet uses a batch size of 4096 samples.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lucas Nestler

Lucas Nestler Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @_clashluke

Nov 20, 2022
Over the past weeks, I've worked on validating @ID_AA_Carmack's hypothesis on how to improve Adam's second-order approximation ()
Resulting from that, I'd like to present TGAdam, an optimizer with up to 50% lower relative error:

1/11
2/11

Unlike AdamW, TGAdam performs well across a wide range of hyperparameters. Additionally, it can significantly outperform the baseline (MNIST+LR=0.1) with minimal tuning.
Below, you can see the aggregated results of over 6986 runs across architectures and datasets:
Large-scale tests on ImageNet or GPT are still outstanding, so take these results with a pile of salt.
However, these results don't come from anywhere. In fact, TGAdamW is theoretically well-motivated.

3/11
Read 11 tweets
Jun 25, 2022
Following a recent discussion sparked by @_arohan_ in this thread:
We tried Shampoo with a few more settings and compared it against AdamW as that's more common than SM3.

TL;DR: Shampoo still is better, but Shampoo#AdamW > AdamW
To go into a bit more detail:
The best pure Adam(W) outperforms the previous best (SM3#Shampoo) by 9.1%.
This is likely caused by our model's significant architectural changes as we switched from Attention to Bottleneck-Convolution+RNN. For Attention, SM3 might still be better.
Interestingly, looking at Adam vs. Adam#Shampoo, it'd appear that the previous benefits vanished entirely. Ths loss difference between these two dropped to 1.35% compared to the previous 3.5% lower loss:
Read 7 tweets
Jun 23, 2022
OpenAI just released a Video-GPT ("VPT") that "solved" Minecraft.
Below, we'll take apart their model to the point where we can start reproducing it.
If you're interested in training this on "the world," join our discord server: discord.gg/24WsKDsV6w
Let's start with their architectural description.
The core of their system has three parts:
1) "Data Cleaning": web-scale scraping and filtering
2) "IDM": a BERT-like model to generate data
3) "VPT": a GPT trained on Video Image
1) Data Cleaning
As with most web-scale datasets, some cleaning has to be done to ensure the model won't be cleaned on unethical inputs such as Minecraft Swastikas. Additionally, they decided to remove hard-to-learn inputs like Facecams and overlays to improve training efficiency Image
Read 17 tweets
Jun 12, 2022
PSA: Switch your optimizer to Shampoo!

We recently tried Shampoo compared to a tuned ensemble of Adam and SM3 at @HomebrewNLP and found that the hyperparameter search space contains many more "winning tickets," which also achieve lower losses!
To be precise, while SM3 trained 7 (0.36%) models to a loss below 1.46, Shampoo achieved that with 255 (11.5%) models. Additionally, the lowest loss is 3.5% lower, which is equivalent to training a 3x bigger model with 3x more data, according to chinchilla's scaling laws.
Unfortunately, this convergence improvement does not come for free. Computing a Shampoo-Update incurs significant overheads as it must compute a matrix inverse for every parameter. Fortunately, the official implementation does this less frequently.
For brevity, ours does not:
Read 9 tweets
Nov 29, 2021
"Sparse is Enough in Scaling Transformers", a recent paper by Sebastian Jaszczur from Google Research, shows 40x speedups at inference using structured sparsity without reducing downstream performance.

Abs: arxiv.org/abs/2111.12763
Code: github.com/google/trax/co…

1/22
Note that, above, the loss plot is not an official image from the paper. Instead, the authors published all of their runs on a public tensorboard: tensorboard.dev/experiment/on3….
This way, we can compare the results ourselves.

2/22
For example, it's a little suspicious how well their "sff64" model performs, considering that "sff32" and "sff128" both underperform the baseline significantly.
So let's try to understand what's going on.

3/22
Read 22 tweets
Nov 25, 2021
I want to retract this tweet publicly:

It is incorrect and causes unnecessary harm to the authors of "PoolFormer: MetaFormer is Actually What You Need for Vision" (arxiv.org/abs/2111.11418).
Using just AvgPool and MLP, they outperform most models.

1/6
First of all, as @Buntworthy pointed out here:
They added a comparison with "ResNet strikes back" (arxiv.org/abs/2110.00476) on GitHub (github.com/sail-sg/poolfo…), showing how they outperform ResNet+ by training PoolFormer with DeiT's augmentations.

2/6
The most incredible part about all of this is that they effectively run
x - LayerNorm(x) + AvgPool(LayerNorm(x))
as a token mixing method, instead of expensive and difficult to scale convolutions or self-attention.

3/6
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(