It's a great day for a look at the astroturf network that followed @ElectionWiz (ID 1290635110149169152, formerly named @Wizard_Predicts among other things) back at the beginning of its Twitter career (immediately after its first follower, @Barnes_Law).
This network consists of (at least) 7991 accounts, most of which were created in the latter half of 2020 or the first half of 2021. The accounts in the network all follow at least 20 times as many accounts as they have followers of their own.
This astroturf network follows a variety of accounts. The most frequently followed accounts are @RanaSarkar, @AAldekhayel, and @thouse_opinions (the latter of which is marked "China state-affiliated media" by Twitter). @ElectionWiz is the 24th most-followed account.
Here's a slideshow of follow order by creation date scatter plots for the 25 accounts with the largest number of followers from the astroturf network, with the followers from the network highlighted in red.
Portions of this network also follow various smaller accounts that claim to be selling followers/likes/etc on various social media services. Examples:
In addition to following accounts en masse, this network also retweets tweets, and two of the five tweets it bestowed the most retweets on are tweets from @67dbfu3aNUBVVxr advertising social media services. #YouDontNeedActualFriendsToBecomeFamous
• • •
Missing some Tweet in this thread? You can try to
force a refresh
It's presently unclear why, but over the past year someone has created a network of fake Facebook accounts pretending to be employees of the Los Angeles Dodgers. Many of the accounts in this network have GAN-generated faces.
cc: @ZellaQuixote
This network consists of (at least) 80 Facebook accounts, 48 of which use StyleGAN-generated faces as profile images. The remaining 32 all use the same image, a real photograph of a random person sitting in an office.
As is the case with all unmodified StyleGAN-generated faces, the main facial features (especially the eyes) are in the same position on all 48 AI-generated faces used by the network. This anomaly becomes obvious when the faces are blended together.
None of these chefs exist, as they're all AI-generated images. This hasn't stopped them from racking up lots of engagement on Facebook by posting AI-generated images of food (and occasional thoughts and prayers), however.
cc: @ZellaQuixote
These "chefs" are part of a network of 18 Facebook pages with names like "Cook Fastly" and "Emily Recipes" that continually post AI-generated images of food. While many of these pages claim to be US-based, they are have admins in Morocco per Facebook's Page Transparency feature.
Between them, these 18 Facebook "chef" pages have posted AI-generated images of food at least 36,000 times in the last five months. Not all of the images are unique; many have been posted repeatedly, sometimes by more than one of the alleged chefs.
Can simple text generation bots keep sophisticated LLM chatbots like ChatGPT engaged indefinitely? The answer is yes, which has some potentially interesting implications for distinguishing between conversational chatbots and humans.
For this experiment, four simple chatbots were created:
• a bot that asks the same question over and over
• a bot that replies with random fragments of a work of fiction
• a bot that asks randomly generated questions
• a bot that repeatedly asks "what do you mean by <X>?"
The output of these chatbots was used as input to an LLM chatbot based on the 8B version of the Llama 3.1 model. Three of the four bots were successful at engaging the LLM chatbot in a 1000-message exchange; the only one that failed was the repetitive question bot.
The spammers behind the "Barndominium Gallery" Facebook page have branched out into AI-generated video and started a YouTube channel with the catchy name "AY CUSTOM HOME". The results are just about as craptastic as you'd expect.
In this synthetically generated aerial video of a (nonexistent) barndominium under construction, the geometry of the roof changes, a blue building appears, and a tree vanishes, all in the course of just three seconds.
This AI-generated barndominium features a long AI-generated porch with some chairs on it. Exactly how many chairs there are depends on what angle you look at it from, however, as the chair on the left splits into three chairs as the camera pans.
Some observations regarding @Botted_Likes (permanent ID 1459592225952649221)...
First, "viral posts which don't result in follower growth and have very little engagement in the reply section" is not a useful heuristic for detecting botted likes. Why not?
cc: @ZellaQuixote
"Viral posts that do not result in follower growth" is not a valid test for botting, because posts from large accounts often go viral among the large account's existing followers but do not reach other audiences, resulting in high like/repost counts but little/no follower growth.
"Very little engagement in the reply section" doesn't work for multiple reasons (some topics spur debate and some don't, some people restrict replies, etc)
Hilariously, @Botted_Likes seems to be ignoring their own criteria, as many of the posts they feature have tons of replies.
As with the banned @emywinst account, the @kamala_wins47 account farms engagement by reposting other people's videos, accompanied by bogus claims that the videos have been deleted from Twitter. These video posts frequently garner massive view counts.
@Emywinst @kamala_wins47 The operator of the @kamala_wins47 account generally follows up these viral video posts with one or more replies advertising T-shirts sold on bestusatee(dot)com. This strategy is identical to that used by the banned @emywinst account.