⚫️ These dots confirm that Webb’s Near-Infrared Camera, or NIRCam, can collect light from celestial objects — and that starlight from the same star can be reflected from each of Webb’s 18 unaligned mirror segments back at Webb’s secondary mirror and then into NIRCam’s detectors.
⚫️ Our team first chose a bright, isolated star called HD 84406. Over ~25 hours, Webb was repointed to 156 positions around the star's predicted location, generating 1560 images with NIRCam’s 10 detectors. This is just the center of an image mosaic with over 2 billion pixels!
⚫️ Because the dots could have been spread out, the initial search covered an area about the size of the full Moon. Our team found light from all 18 mirror segments very near the center early in the search, closely matching expectations & simulations.
⚫️ Each dot visible is the same star as imaged by each of Webb’s 18 primary mirror segments. Here, you can see which dot corresponds to which mirror segment, including the dots taken by the segments on Webb’s mirror wings.
⚫️ Right now, as Webb is still getting into focus, you can think of Webb as an 18-eyed creature looking in 18 separate directions. A larger dot indicates that the segment is less focused than a smaller dot. A flatter, pancake-like dot indicates that a segment may be tilted. 🥞
⚫️ In the coming weeks, our team will align & focus each of these 18 dots, then stack the dots on top of each other to form a single point — one unified image from all of Webb’s 18 mirror segments. What’s ahead: blogs.nasa.gov/webb/2022/02/0…
Then, Webb’s images will only become clearer and more detail-laden as its instruments arrive at their intended operating temperatures and start capturing data. All of this will culminate in our spectacular first scientific images, expected this summer. #UnfoldTheUniverse
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Bonus image! When it’s time to focus, sometimes you need to take a good look at yourself.
This “selfie” taken by Webb of its primary mirror was not captured by an externally mounted engineering camera, but with a special lens within its NIRCam instrument. #UnfoldTheUniverse
This special lens is meant for engineering, not science, and allows NIRCam to capture an “inward-looking” image of the primary mirror. This image helps us to check that the telescope is aligned with the science instruments. blogs.nasa.gov/webb/2022/02/1…
What you are seeing is the actual primary mirror of Webb as it observes its engineering target, a bright star. All the mirror segments are seeing starlight, but the bright segment is bright because, from NIRCam’s view, the segment is directly aligned with the star.
So…you’ve heard that the Webb telescope will be orbiting Lagrange point 2. But what even is that, anyway? And how do you orbit something that isn’t an object?
First, the basics. Lagrange points refer to locations where the gravitational forces of 2 massive objects — such as the Sun and Earth — are in equilibrium. Webb will be located more specifically at Sun-Earth Lagrange point 2, or L2 for short.
Why send Webb to orbit L2?
😎 Shade: The Sun, Earth (and Moon) are always on one side. At L2, Webb’s sunshield can always face all of these heat & light sources to protect Webb’s optics & instruments, which have to stay super cold to detect faint heat signals in the universe.
Each of Webb’s mirror segments has 3 metal pegs on its back, which fit snugly into matching sockets in the telescope structure. During launch, the mirrors were tucked safe and sound.
Tiny Dancers 🩰
Over about 10 days, each mirror segment will move out by 12.5 mm (about half an inch) to get the pegs clear from the sockets. It may not sound like much, but these initial moves are actually the largest moves Webb’s mirror motors will ever make in space!
❄️ Now that our deployments are complete, just like our telescope, we’re entering a period of cooldown. Our updates will be less frequent, but that doesn’t mean things have stopped happening: blogs.nasa.gov/webb/2022/01/1…
Thread ⬇️
First, what do we mean by “cooldown”? If you’ve been checking the temperatures of our “cold side” at webb.nasa.gov/whereiswebb, you can see we’re still a ways off from our operating temperatures of less than 50 Kelvin (about -370° F, or -223° C).
The deployment of our sunshield helped a lot with quickly lowering the temperatures on the cold side, but further cooling down will take place more slowly over time. The sunshield helps to passively cool Webb, meaning the optics get cold solely by being in the shade. 🌡
We are GO for #NASAWebb’s final mirror wing deployment this morning! Here’s what you should expect:
🔲 Fire pins to release mirror wing
🔲 Unfold mirror
🔲 Latch the wing (2+ hours) ⏱
🔲 🥳🕺🏽🎉
🔲 #UnfoldTheUniverse! (5+ months) ✨
More: go.nasa.gov/3G8Bc1P
✅ Click! We just fired the last 4 of #NASAWebb's 178 release mechanisms, or pins — all of which had to work perfectly for this unfolding to take place. These 4 will release the restraints that held Webb's mirror wing safely in place during launch. #UnfoldTheUniverse
🚗 Folks, start your engines!
As the #NASAWebb team gets ready to deploy the second primary mirror wing from @SpaceTelescope, they just completed a small motor checkout movement, ensuring the wing is ready to go. #UnfoldTheUniverse
We've been hearing you loud and clear: Why doesn't Webb have cameras for its journey to #UnfoldTheUniverse? It sounds like a no-brainer, but there's more to it than meets the lens. Thread ⬇️
1. Light 💡
Our gold-coated mirrors were photogenic on Earth, but the mirror side of Webb is pitch dark in space. Meanwhile, the other, Sun-facing side of Webb is so shiny that cameras there would have glare & contrast issues.
2. Power 🔌
We would have to run cables and power out to cameras on Webb, and the power balance on the cold side of Webb is especially delicate. More cables adds more of a threat of heat and vibration transfer through the wires, which could impact image quality.