Jordan Taylor Profile picture
Mar 9, 2023 12 tweets 6 min read Read on X
The strange story of the Demon UAV and fluidic thrust vectoring.

Or: How to fly a plane with no control surfaces at all... Image
Many years ago in the University of Manchester I came across a project called FLAVIIR. I wasn't personally involved, but I was interested: It's primary focus was fluidic flight control: Flight control with no flaps and no mechanical thrust vectoring.

Simple. Stealthy. Elegant. Image
The FLAVIIR project was a 6 year project between BAE Systems, Cranfield University and my alma mater, Manchester University. It featured a grab bag of blue sky technologies that would be developed into a flight ready UAV.

The most notable were fluidic flapless flight controls. Image
The fluidic controls were twofold: Coanda effect blown flaps to replace mechanically actuated flaps and ailerons in roll, and fluidic thrust vectoring to replace elevators/ mechanical thrust vectoring in pitch, and rudders in yaw. ImageImage
So why fluidic thrust vectoring? Why not a conventional mechanical system?

Mechanical thrust vector systems are complex, heavy (to 20%-30% of engine weight), have expensive high temp components and a short life. They can also be quite inefficient, with up to 10% thrust loss. ImageImage
What is fluidic thrust vectoring?

By injecting mixing flow adjacent to a jet exhaust plume, the direction of the exhaust can be induced to change without mechanical intervention. There are many ways to do this: Co-flow injection, shock impingement and counter flow injection. ImageImageImage
Efficiency of operation is high: Co flow injection can produce sizeable control inputs with as little as 1% of injected flow.

There has even been a study on passive fluidic thrust vectoring, entraining aircraft boundary layer air without active injection: More efficient still. Image
But FLAVIIR used Co flow injection.

New technologies were trialled and matured into increasingly integrated and sophisticated platforms, starting with small electric motor craft & wind tunnel testing, and building to turbojet scale prototypes. ImageImage
The goal: An integrated demonstrator UAV bringing together all the advanced concepts under development.

The Demon. Image
Demon flew in 2009 & 2010, and was the first aircraft to fly without the use of flaps or geometry shape changes.

So what has happened since then?
via @YouTube
BAE Systems is a massive defence contractor, so you'd expect something to come of this, but there was radio silence until 2019, when the Magma UAV flew: A development of the technologies pioneered in the Demon, with efficient supersonic nozzle fluidic vectoring. ImageImage
Here's a Magma video: Flaps are only used for takeoff and landing.

What's to follow this? Who knows. The technology is promising, particularly for high reliability stealthy drones or high altitude applications. Keep your eyes open.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Jordan Taylor

Jordan Taylor Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @Jordan_W_Taylor

Aug 30
It's the greatest story never told: It's the story of how a frugal county in the North of England invented the modern world.

Put on a flat cap and call up the whippet, because this is a thread about my home county, and the inventions that came out of Yorkshire! Image
Image
Steel!

Benjamin Huntsman invented high homogeneity crucible steel in Sheffield in the 1740s, firing with coke to fully melt the steel and homogenise the carbon content.

This became used… everywhere, and supercharged the ongoing industrial revolution. Image
Steam trains.

Steam locomotion had been in development for some decades by 1812, but arguably the world's first commercially successful steam locomotive was Matthew Murray's Salamanca. To him, we owe speed. Image
Read 14 tweets
Aug 26
A liquid rocket boost stage needs to pump fuel and cryogenic oxidiser to the combustion chamber at a rate that beggars belief: The 33 engines on the boost stage of SpaceX's monstrous ‘Superheavy’ booster each chew through about 700 kg of propellant every second. Put all those engines together and the flow rate of liquid fuel & oxygen would be sufficient to empty an Olympic swimming pool in under 2 minutes, if you could find an Olympic swimming pool for cryogenic propellant.

Can you think of any conventional lightweight pump that can do this? Me neither. You need something special…

The turbopump comprises a typically-axial turbine powered by hot, pressurised gas flow that powers centrifugal compressor pumps that pump the colossal quantities of propellant required and pressurize it to, potentially, hundreds of standard atmospheres.

It's a handy, lightweight way to provide pumping power, but it does require that you have a source of hot, high-pressure gas to work with.

Now, where would you find that in a rocket engine?

Indeed. In order to burn fuel, we must pump it. In order to pump it, we may have to burn some of it.

Um…Image
Image
The Gas Generator Cycle.

A small quantity of the pressurised fuel & oxidiser flows are tapped, brought to a small combustor, vaporised, ignited then expanded through a turbine that powers the fuel and oxygen compressor cycles.

Inevitably the gas generator can't run with a completely nominal fuel:oxy mix, as it would get so hot that it would melt the turbine blades, so typically a gas generator will trade off some efficiency and run fuel rich to power the turbopumps.

-Why not oxy rich? Because fuel has a higher specific heat at constant pressure (Cp) and so you need less mass flow through the gas generator if it's fuel rich than oxy rich, meaning more useful propellant goes to the main combustor & nozzle that moves the rocket.

So the upside of a gas generator cycle is relative simplicity and robustness, which is why it's used on the most reliable rocket motors around, the SpaceX Merlin. The downside is that you trade away efficiency by throwing away some of your propellant, meaning that the tyranny of the Tsiolkowsky rocket equation will kick you where the sun don't shine.Image
Image
Staged combustion attempts to address this, by taking either a fuel rich or oxy rich preburner, operating at a much higher flow volume than a standard gas generator, and routing the hot gases that leave the turbine straight to the combustion chamber so that they're not lost. This not only increases the average propellant exhaust velocity (since none of it is lost) and therefore efficiency, but also allows a lower average temperature in the preburner and turbine, since there's a higher volume throughput instead.

On the flipside you must deal with hugely increased engineering complexity, an increased potential for feedback control problems between the different parts of the engine, and also a much higher pressure preburner, since it will still need to deliver high working pressures to the combustion chamber after the losses of the turbine and injectors.

The Soviets got there first, and some of their genius manifested in the Russian RD180 oxy-rich staged combustion engine, which was bought by the Americans and used in Atlas rockets for many years. Its unique oxy-rich staged combustion cycle was efficient but not without drawbacks, as high temperature gaseous oxygen is brutal to exposed metal surfaces, demanding an enamel coating on many parts of the engine.

And it gets even more complex than that…Image
Read 5 tweets
Jul 18
Last month Rolls-Royce won the UK's small modular reactor competition to develop and build SMRs in the UK. It could be a new dawn for nuclear power.

But who else was in the competition, what was special about each design, and which is your favourite?

An SMR thread… Image
What's an SMR?

A small modular reactor is a way of beating the brutally high capital costs of building nuclear power: By simplifying assembly (modularity) and minimising subsystem size so almost all of it is factory built you harvest industrial learner effects and low costs. Image
Boiling water vs pressurised water reactors.

All designs in this list are either PWRs or BWRs, the most common reactor styles today. I've a thread on the basics if you need it, but otherwise on with the show!
Read 21 tweets
Jul 4
In April on a mountain in Chile the Vera Rubin observatory gathered first light, and this telescope will be world-changing! -Not because it can see the furthest… but because it can see the fastest!

The Vera Rubin telescope thread! The value of speed, and unique technology… Image
Who was Vera Rubin?

She first hypothesized the existence of dark matter, by observing that the rotation speed of the edge of the galaxy did not drop off with radius from the centre as much as it should. The search for dark matter, and other things, will drive this telescope… Image
Does it see a long way?

Yes, but it’s not optimized for that: The battle of the big mirrors is won by the Extremely Large Telescope which, yes, is meant to see a long way. Vera Rubin is not that big, but that doesn’t matter because it has a different and maybe better mission. Image
Read 22 tweets
Jun 20
Rotating detonation engines: Riding the shockwave!

A technology that could revolutionise aviation, powering engines with endlessly rotating supersonic shockwaves. It could bring us hypersonic flight, super high efficiency and more.

The detonation engine thread… Image
Almost all jet engines use deflagration based combustion, not detonation, but while fuel efficiency has been improving for decades, we're well into the phase of decreasing returns and need some game-changing technologies.

One is the rotating detonation engine (RDE). Image
To understand the appeal of RDEs, you need to know that there are two forms of combustion cycle: Constant pressure, where volume expands with temperature, and constant volume, where pressure goes up instead.

Most jet engines use constant pressure. RDEs use constant volume. Image
Read 21 tweets
Jun 6
As a new graduate I once had to sit down and draft an engine test program for a subsystem of a new model of Rolls-Royce aero engine. It was illuminating.

So here's a thread on some of the weirder things that this can involve: The jet engine testing thread! Image
Fan Blade Off!

Easily the most impressive test: A jet engine needs to be able to contain a loose fan blade. In the FBO test, either a full engine or a fan & casing rig in low vacuum is run to full speed, then a blade is pyrotechnically released.
Frozen.

The Manitoba GLACIER site in Northern Canada is home to Rolls-Royce's extreme temperature engine test beds. Not only must these machines be able to start in temperatures where oil turns to syrup, but in-flight ice management is crucial to safe flying. Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(