"The potential climate impact of #SolarGeoengineering is examined in a recent study using climate model simulations by artificially reducing the incoming solar radiation at the top of the atmosphere." #ClimateEngineering #SolarShading
Results discussed in a🧵 1/9
"Climate scenario simulations reveal that a doubling of atmospheric CO2 induces a surface temperature rise which is amplified over the poles primarily during the respective winter. The warming also causes intensification & poleward shift of the global precipitation pattern." 2/9
"In the model, a 2.1% globally uniform #SolarReduction can largely compensate the global mean warming caused by a doubling of CO2." 3/9
This study finds that "#SolarShading is efficient to restore the temp at the region where the background sunshine is strong, regionally at low-latitudes, seasonally during summer. A 3.6% solar reduction in the tropics can largely reduce the tropical #GlobalWarming as well." 4/9
"However, it reduces the precipitation at the central tropics, while increase the precipitation over the monsoon region." 5/9
"Comparatively, a 14% #SolarReduction over the #poles can effectively prevent the polar summer temp increase & sea-ice retreat. However, caused by the increased temp gradient, polar #SolarShading increases the storm activity at high latitudes, especially during summer." 6/9
The simulations of this study show that "#SolarShading could be an effective way to stabilize the #polar cryosphere. Nevertheless, it has a strong impact on the hydrological cycle & provides a heterogenous regional climate signal."
7/9
Read the open-access study (Preprint) entitled: The effect of global and regional solar shading onclimate: A simulation study" here ⬇️ researchsquare.com/article/rs-285…
🚨A NEW study explores a theoretical #geoengineering approach to combat global warming — by altering Earth’s orbit.
Simulations suggest that shifting Earth ~5.8% farther from the Sun could cool the planet by roughly 7K, effectively offsetting projected warming.
DETAILS🧵1/10
2/ Climate models suggest global temperatures could rise by 7K by 2100, driven by greenhouse gas emissions.
This study asks: what if, instead of changing the atmosphere, we changed our position in space?
Specifically: increase Earth’s orbital radius.
3/ Basically, the paper builds on the science of Milankovitch cycles which is slow, natural variations in Earth’s orbit and tilt that have triggered past ice ages.
These cycles show that even slight orbital changes can dramatically affect climate.
CALL FOR RESEARCH PRESENTATION PROPOSAL—RFF and the Harvard Solar Geoengineering Research Program invite individuals to present research at their upcoming workshop
JPMorgan signed 13-year deal with CO280 to remove 450,000 tons of biogenic CO₂ from a U.S. pulp mill at under $200/ton—one of the largest and lowest-cost CDR deals to date.
🚨AstroCool is a proposed emergency geoengineering plan by inventor David Chaum.
It involves mining moon dust & launching it into a space orbit between the Sun & Earth to shade the planet & restore pre-industrial temperatures.🧵1/12
#SRM #SolarGeoengineering #ClimateSolutions
2/ AstroCool (the “Plan X” initiative) was unveiled by Chaum as a backup climate fix.
It proposes using centrifugal lunar launchers and robotic “droid” satellites to fling regolith into the Sun–Earth L1 point, creating a sunshade that cuts incoming sunlight.
3/ Scientists note lunar dust is unusually well-sized for this purpose:
Chaum explains most of the Moon’s surface is covered in ~0.2 µm grains “perfect for blocking light”.