"The potential climate impact of #SolarGeoengineering is examined in a recent study using climate model simulations by artificially reducing the incoming solar radiation at the top of the atmosphere." #ClimateEngineering #SolarShading
Results discussed in a🧵 1/9
"Climate scenario simulations reveal that a doubling of atmospheric CO2 induces a surface temperature rise which is amplified over the poles primarily during the respective winter. The warming also causes intensification & poleward shift of the global precipitation pattern." 2/9
"In the model, a 2.1% globally uniform #SolarReduction can largely compensate the global mean warming caused by a doubling of CO2." 3/9
This study finds that "#SolarShading is efficient to restore the temp at the region where the background sunshine is strong, regionally at low-latitudes, seasonally during summer. A 3.6% solar reduction in the tropics can largely reduce the tropical #GlobalWarming as well." 4/9
"However, it reduces the precipitation at the central tropics, while increase the precipitation over the monsoon region." 5/9
"Comparatively, a 14% #SolarReduction over the #poles can effectively prevent the polar summer temp increase & sea-ice retreat. However, caused by the increased temp gradient, polar #SolarShading increases the storm activity at high latitudes, especially during summer." 6/9
The simulations of this study show that "#SolarShading could be an effective way to stabilize the #polar cryosphere. Nevertheless, it has a strong impact on the hydrological cycle & provides a heterogenous regional climate signal."
7/9
Read the open-access study (Preprint) entitled: The effect of global and regional solar shading onclimate: A simulation study" here ⬇️ researchsquare.com/article/rs-285…
This episode dives into a radical proposal: using a buried nuclear explosion on the seafloor to break up basalt & speed up carbon removal via Enhanced Rock Weathering. The goal? Sequester 30 years of global CO2.
2/12
This episode unpacks a preprint by Hosea Olayiwola Patrick drawing lessons from COVID-19 for solar geoengineering.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (09 June - 15 June 2025):
🔗:
🧵0/17
@InSoilClimate secured its largest funding to date through a €100 million agreement with Key Carbon, accelerating regenerative agriculture and carbon credit generation across Europe.
Canada Nickel partnered with NetCarb to scale mineral carbon sequestration at Crawford. NetCarb's tech could boost CO₂ uptake 10‑fold to 10–15 Mt/year, vs 1.5 Mt via Canada Nickel's proprietary IPT Carbonation.
🚨A new study [preprint] shows that injecting sulfur at 50km could make #SolarGeoengineering much safer.
It cools the planet more effectively, speeds ozone recovery & avoids stratospheric disruptions. This could be done using a fleet of clean, reusable H2 rockets.
DETAILS🧵1/10
2/ SAI involves spraying SO₂ into stratosphere, where it forms aerosols that reflect sunlight—cooling Earth. It mimics volcanic eruptions like Mt. Pinatubo (1991), which temporarily cooled the planet.
But current “SAI models” inject SO2 at a rate of 10 Tg/yr at ~25km altitude.
3/ But Injecting at 25 km creates problems
Aerosols accumulate in the tropical lower stratosphere, causing up to 6°C warming in that layer.
This disturbs jet streams, increases stratospheric water vapor, and delays the ozone layer’s recovery—by 25–55 years in Antarctica.
🚨A new study has revealed for the first time that ancient carbon, stored in landscapes for thousands of years or more, can find its way back to the atmosphere as CO₂ is released from the surfaces of rivers at a rate of 1.2 billion tonnes per year.
Details🧵1/8
2/ To understand the true source of river CO₂, researchers compiled a global dataset of 1,195 radiocarbon measurements of dissolved inorganic carbon (DIC), CO₂ & CH₄ from rivers & streams.
This let them determine whether the emitted carbon was modern—or much older.
3/ Using radiocarbon signatures (¹⁴C), they found that 59% of river CO₂ emissions come from "old" C—millennia-old soil carbon & even petrogenic carbon (rock-derived, >55,000 years old)
Only ~41% came from recent biological sources like plants & microbes (decadal carbon).