Take a step-by-step walkthrough of how their solution works in a 🧵 below ⬇️
1/10
1️⃣ "@ebbcarbon with aquaculture farms, desalination plants, ocean research labs, and other industrial sites that process seawater."
2/10
2️⃣ "Ebb intercepts existing salt water flows at the facility and processes the water before it returns to the ocean."
3/10
3️⃣ "Using low carbon electricity, Ebb run the salt water through a stack of ion-selective membranes that separate it into acidic and alkaline solutions."
4/10
4️⃣ "Ebb measure and monitor the pH level and volume of the alkalinity we produce in real time. This enables us to safely return it at levels within the ocean's natural pH variance."
5/10
5️⃣ "Ebb return the alkaline solution to the sea, where it immediately lowers the acidity of the sea water locally."
6/10
6️⃣ "Over weeks to months, the alkaline solution reacts with dissolved CO2 in seawater to create bicarbonate (HCO3), a stable form of carbon storage for 10,000+ years."
7/10
7️⃣ "With more CO2 locked away as bicarbonate, the ocean will naturally equilibrate and sequester more CO2 from the air. Ebb measures the CO2 removed from the air using sensors in the water and ocean and carbonate chemistry models."
8/10
8️⃣ "By partnering with the ocean, Ebb Carbon has the potential to be one of the most energy efficient and cost effective ways to reverse the impacts of climate change both locally and globally."
9/10
🚨 The Royal Society has published a new briefing today finding that techniques to reflect a small portion of sunlight back into space (#SRM) could help lower global temperatures if deployed worldwide, but cannot replace emissions cuts or fully address climate impacts.
🧵1/7
2/ ➝ The report reviews solar radiation modification (#SRM) approaches, including stratospheric aerosol injection (#SAI) and marine cloud brightening (#MCB), outlining their potential to temporarily reduce warming and associated risks.
3/ ➝ It notes that SRM would only mask the effects of GHG emissions and would not address issues such as ocean acidification.
🚨🌲 New research reveals that even intact boreal forests, some of the planet’s strongest natural carbon sinks, lose their ability to absorb CO₂ as they age.
Here’s what the scientists found & why it matters for our climate models🧵1/9 #CarbonSink #CarbonRemoval
2/ Boreal forests cover vast regions across Canada, Russia, and Scandinavia and store enormous amounts of carbon in trees and soil.
They’re often seen as stable, long-term carbon sinks, but this study challenges that assumption with new global-scale data.
3/ Using seven global Net Ecosystem Productivity (NEP) datasets and a high-resolution forest age map, researchers tracked how C uptake changes as forests grow older.
They used a space-for-time substitution method, comparing forests of different ages to infer long-term trends.
🚨A major 6-country survey (N=5,310) finds Europeans support -ve emissions to meet climate goals, but strongly prefer nature-based solutions like afforestation over engineered options like Direct Air Capture. Trust hinges on benefits for nature & future generations.
🧵1/10 #CDR
2/ When allocating how to tackle emissions, respondents clearly prioritized immediate mitigation:
🚨A new study warns that efforts to cool the planet through stratospheric aerosol injection (#SAI) could face far greater challenges than models predict, from unpredictable monsoon shifts to material shortages & engineering limits, every step adds new risks.
🧵1/8 #SRM
2/ The authors explore both micro-level (engineering) and macro-level (governance & supply) factors that could restrict feasible deployment.
Key finding: these constraints could drastically raise costs, risks, and uncertainty, especially for “solid” (non-sulfate) aerosols.
3/ Traditional SAI uses sulfate aerosols (like volcanoes).
But alternatives, CaCO₃, TiO₂, Al₂O₃, ZrO₂, even diamond, promise less ozone damage.
Yet producing, aerosolizing, and dispersing these solids in submicron form is technically daunting.