Take a step-by-step walkthrough of how their solution works in a 🧵 below ⬇️
1/10
1️⃣ "@ebbcarbon with aquaculture farms, desalination plants, ocean research labs, and other industrial sites that process seawater."
2/10
2️⃣ "Ebb intercepts existing salt water flows at the facility and processes the water before it returns to the ocean."
3/10
3️⃣ "Using low carbon electricity, Ebb run the salt water through a stack of ion-selective membranes that separate it into acidic and alkaline solutions."
4/10
4️⃣ "Ebb measure and monitor the pH level and volume of the alkalinity we produce in real time. This enables us to safely return it at levels within the ocean's natural pH variance."
5/10
5️⃣ "Ebb return the alkaline solution to the sea, where it immediately lowers the acidity of the sea water locally."
6/10
6️⃣ "Over weeks to months, the alkaline solution reacts with dissolved CO2 in seawater to create bicarbonate (HCO3), a stable form of carbon storage for 10,000+ years."
7/10
7️⃣ "With more CO2 locked away as bicarbonate, the ocean will naturally equilibrate and sequester more CO2 from the air. Ebb measures the CO2 removed from the air using sensors in the water and ocean and carbonate chemistry models."
8/10
8️⃣ "By partnering with the ocean, Ebb Carbon has the potential to be one of the most energy efficient and cost effective ways to reverse the impacts of climate change both locally and globally."
9/10
From U.S. withdrawal from global climate bodies & anti-geoengineering bills, to SAI uncertainty tool, Arctic field trials & funding calls, SRM stayed at the nexus of sci & geopolitics.
Top 10 SRM Highlights (Jan'26)🧵1/11
1️⃣ 𝗨.𝗦. 𝗲𝘅𝗶𝘁𝘀 𝗨𝗡𝗙𝗖𝗖𝗖 & 𝗜𝗣𝗖𝗖 - Experts warn withdrawal could weaken SRM governance, deepen geopolitical mistrust, and accelerate fragmented or unilateral approaches.
2/11
2️⃣ 𝗔𝗻𝘁𝗶-𝗴𝗲𝗼𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗯𝗶𝗹𝗹𝘀 𝗶𝗻 𝘁𝗵𝗲 𝗨.𝗦. - New Arizona and Iowa state proposals target geoengineering, despite limited evidence and no active SRM programs.
🚨Climate pathways to 1.5°C increasingly depend on land-intensive carbon dioxide removal (#CDR) like forestation and BECCS.
But new research shows these climate solutions could place major pressure on #biodiversity if deployed without safeguards.
Details🧵1/11
2/ Using five integrated assessment models, the study examines where large-scale CDR is projected to occur & and how often it overlaps with biodiversity hotspots and climate refugia, the places most critical for species survival.
3/ The analysis focuses on a moderate but realistic deployment level of 6 GtCO₂ per year:
• 3 GtCO₂/yr from forestation
• 3 GtCO₂/yr from BECCS
Even at this level, land pressures are already significant.
🚨The Politics of Geoengineering (book) is out, offering 1st comprehensive social science view of #geoengineering.
It examines political, legal, economic & societal dimensions of CDR & SRM, from Africa to the Asia-Pacific, amid urgent governance & ethical debates
Chapters🧵1/15
2/ Chapter 01: Geoengineering has shifted from theory to contested policy, with technology outpacing governance. The analysis highlights political, legal, economic, and justice dimensions and calls for urgent global oversight.
3/ Chapter 2 examines Carbon Dioxide Removal (CDR) as geoengineering, analyzing CO2 extraction, storage, and conversion, with SWOT insights on techniques and implications for sustainable climate action.
🚨Is carbon dioxide removal (#CDR) in the Arctic really feasible?
A new peer-reviewed study systematically assessed proposed Arctic CDR pathways and finds that feasibility is far more limited than often assumed.
DETAILS🧵1/14
2/ As Arctic warms rapidly (4x) & attracts attention for climate interventions, can it host CDR at meaningful scale?
To answer this, authors conducted a comparative assessment of major CDR approaches proposed for Arctic regions, spanning both nature-based & engineered methods.
3/ The analysis draws on existing empirical studies, pilot projects, and modeling literature, evaluating each CDR pathway against biophysical constraints, technical readiness, environmental risks, and governance requirements.
🚨2025 Year in Review: Solar Geoengineering Edition🚨
As we enter 2026, we’re excited to share our yearly summary for #SRM: "Solar Geoengineering in 2025: Rays of Hope, Clouds of Doubt."
Here’s what we cover in this comprehensive review:🧵1/11
2/ 𝐖𝐡𝐚𝐭’𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞𝐝 𝐢𝐧 𝐨𝐮𝐫 𝟐𝟎𝟐5 𝐫𝐞𝐯𝐢𝐞𝐰?
1️⃣ Rising Temp & Escalating Climate Impacts
2️⃣SRM Funding Announcements
3️⃣Top SRM Stories
4️⃣Restrictions & Bans on SRM
5️⃣Essential SRM Reads
6️⃣SRM in Media
7️⃣Research Highlights
8️⃣Our Work Across Geoengineering
3/ 2025 was the third-warmest yr on record. @CopernicusEU shows the last 11 yrs were the warmest ever, with the global average temp in yrs 2023-25 exceeding 1.5 °C. Top climate disasters caused $120B+ in losses, intensifying debates over mitigation, CDR & SRM.