Take a step-by-step walkthrough of how their solution works in a 🧵 below ⬇️
1/10
1️⃣ "@ebbcarbon with aquaculture farms, desalination plants, ocean research labs, and other industrial sites that process seawater."
2/10
2️⃣ "Ebb intercepts existing salt water flows at the facility and processes the water before it returns to the ocean."
3/10
3️⃣ "Using low carbon electricity, Ebb run the salt water through a stack of ion-selective membranes that separate it into acidic and alkaline solutions."
4/10
4️⃣ "Ebb measure and monitor the pH level and volume of the alkalinity we produce in real time. This enables us to safely return it at levels within the ocean's natural pH variance."
5/10
5️⃣ "Ebb return the alkaline solution to the sea, where it immediately lowers the acidity of the sea water locally."
6/10
6️⃣ "Over weeks to months, the alkaline solution reacts with dissolved CO2 in seawater to create bicarbonate (HCO3), a stable form of carbon storage for 10,000+ years."
7/10
7️⃣ "With more CO2 locked away as bicarbonate, the ocean will naturally equilibrate and sequester more CO2 from the air. Ebb measures the CO2 removed from the air using sensors in the water and ocean and carbonate chemistry models."
8/10
8️⃣ "By partnering with the ocean, Ebb Carbon has the potential to be one of the most energy efficient and cost effective ways to reverse the impacts of climate change both locally and globally."
9/10
🚨Is carbon dioxide removal (#CDR) in the Arctic really feasible?
A new peer-reviewed study systematically assessed proposed Arctic CDR pathways and finds that feasibility is far more limited than often assumed.
DETAILS🧵1/14
2/ As Arctic warms rapidly (4x) & attracts attention for climate interventions, can it host CDR at meaningful scale?
To answer this, authors conducted a comparative assessment of major CDR approaches proposed for Arctic regions, spanning both nature-based & engineered methods.
3/ The analysis draws on existing empirical studies, pilot projects, and modeling literature, evaluating each CDR pathway against biophysical constraints, technical readiness, environmental risks, and governance requirements.
🚨2025 Year in Review: Solar Geoengineering Edition🚨
As we enter 2026, we’re excited to share our yearly summary for #SRM: "Solar Geoengineering in 2025: Rays of Hope, Clouds of Doubt."
Here’s what we cover in this comprehensive review:🧵1/11
2/ 𝐖𝐡𝐚𝐭’𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞𝐝 𝐢𝐧 𝐨𝐮𝐫 𝟐𝟎𝟐5 𝐫𝐞𝐯𝐢𝐞𝐰?
1️⃣ Rising Temp & Escalating Climate Impacts
2️⃣SRM Funding Announcements
3️⃣Top SRM Stories
4️⃣Restrictions & Bans on SRM
5️⃣Essential SRM Reads
6️⃣SRM in Media
7️⃣Research Highlights
8️⃣Our Work Across Geoengineering
3/ 2025 was the third-warmest yr on record. @CopernicusEU shows the last 11 yrs were the warmest ever, with the global average temp in yrs 2023-25 exceeding 1.5 °C. Top climate disasters caused $120B+ in losses, intensifying debates over mitigation, CDR & SRM.
🚨Two recent engineering studies examine whether H2-powered aircraft can reliably deliver large payloads to the lower stratosphere for #SAI.
The papers compare a conventional tube-wing aircraft & a canard-wing alternative, analyzing design feasibility & performance limits🧵1/14
2/ Delivering aerosols to these altitudes with large payloads is difficult using existing aircraft.
Both studies explore H2 propulsion b/c it offers high gravimetric energy density & zero CO₂e, potentially enabling long-duration missions without adding direct C emissions
3/ To enable comparison, both designs are evaluated against the same core mission:
• Climb and cruise at 65,000 ft
• Sustain flight for ~3.5 hours
• Deliver a ~50,000 lb aerosol payload
• Operate near aerodynamic and propulsion limits typical of the lower stratosphere
For smallholder agroforestry, traditional methods are labor-intensive, expensive & hard to scale. As a result, farmers are locked out of climate finance.
3/ So, in this study researchers used an approach "DiameterAlgorithm," a non-contact method that estimates tree diameter (DBH) from a single photograph.
Instead of manual tapes or costly sensors, it relies on computer vision and a simple reference tag placed on the tree.
🚨Monthly Solar Geoengineering Updates (Dec Edition)
From NCAR’s possible shutdown & the Guardian’s sun-dimming debate to an African-led #SRM hub, the EU’s first governance conference & new studies, SRM dominated headlines and labs alike.
Top 10 SRM Highlights (Dec 2025)🧵1/8
1️⃣ Trump administration plans to dismantle NCAR, a leading hub for climate & SRM research
2️⃣ Guardian editorial sparks debate, warning of “sun-dimming” under political control. In response, letters argue research shutdown stifles science & misrepresents African perspectives.
2/
3️⃣ DSG launches SRM Governance Horizons, a project to assess institutional readiness and inclusive governance for solar radiation modification debates.
4️⃣ Sandro Vattioni wins China’s 2025 Pineapple Science Award for research on diamond dust as a potential SRM material.