Andrew Côté Profile picture
Jul 26, 2023 16 tweets 6 min read Read on X
Superconducting magnet engineer chiming in.

This result could be very big news, and overnight revolutionize all of electronics and energy. It might not.

Here's a mental model for the non-expert to understand what's going on.

RTAPS: The good, the bad, and the ugly: 🧵 Image
Summary
The good: There's some plausibility here, and if so, it's game-changing
The bad: Reasonable chance this is a similar but different physical property
The ugly: Their plots, and engineering usefulness

Let me explain:
The Good:
Lee-Kim-Kwon (LKK) use familiar materials, Cuprates, and measures some key metrics of a room-temp superconductivity (SC):
- Zero-resistivity
- Critical current
- Critical magnetic field
- Meissner effect Image
For context, past progress was measured by successively higher temperatures using new kinds of materials. LKK result does fit the rough trend of increasing temperatures, but, they do it at ambient pressure.

The highest-temperature results before were at >1 million atmospheres Image
To understand, think of electrons normally bouncing off everything as they fall, plinko-style; in SC they glide smoothly. To make electrons glide, either you cool them down a lot, or squeeze them together.

Therefore you can sort of just trade pressure for temperature
Image
Image
The key difference in LKK paper is this: the channel for letting electrons glide doesn't come from low temp, or by squeezing together.

It comes from an internal tension that forms as the material forms, just like the tempered glass of a car windshield. Image
LKK hypothesis that copper atoms are percolating into the crystal and replacing lead atoms, and this creates a structural shrinkage of ~0.5% and produces internal strains, creating this smooth-electron-channel

Good: Plausible materials, fits an overall trend, easy to reproduce Image
The bad:
Normally the superconducting transition temperature is predicted by measuring heat capacity versus temperature. This is the Debye Temp.

TKK say they can't measure this, because the usual theories of SC don't explain their sample: a lil bit sus
Image
Image
There's two two papers published, which present results in different ways, using different scalings. One result seems almost unphysical altogether.

Normally SC's perfectly repel magnetic field, or have a diamagnetism of -1. These guys report it as -154

Image
Image
Image
A 'super diamagnetic' could also weakly levitate itself above a large permanent magnet, like what the authors video shows.

There's some reason for caution here, but this could also boil down to non-standard presentation of results and genuine impurities in the sample Image
The ugly:
Some of their plots.

More seriously, there's really three numbers that are relevant for superconductors in engineering practice:
Current density, magnetic field, and temperature. Image
You can think of it as your 'magnet budget' that you get to spend on either high current density, high magnetic fields, or high temperature. There are limits too - you need to stay well below Tc, and, pushing the limits will burn out your magnets by 'quenching' them
If you want to design a magnetic confinement fusion reactor, you need a balance of all three: magnets that can withstand their own high field, be compact, and not require too much cooling Image
LKK haven't put out a full set of numbers on critical current density, just total current, so its hard to compare. However, magnets for fusion have to withstand fields of ~10 Tesla or more, or about 300x the fields that kill off SC in their samples Image
That being said, the temperatures these operate at are enormous by comparison. In Fusion, the magnet-killer is the neutron heat flux that escapes through the reactor walls and heats up your coils.

Heat-resistant coils would still make my job 10x easier Image
The net-net:
No champagne yet, but watch closely - this would be a serious game changer in things like power transmission, energy storage, and future-tech like quantum computers, fusion energy, mag-lev trains.

I'm even more optimistic than 6 weeks ago

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Andrew Côté

Andrew Côté Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @Andercot

Jul 6
The simplest way I can say it is this:

Nuclear can supply all the developed worlds base load energy demand with the minimum of land, materials, and labor.

It's expensive because of bureaucracy. End of discussion. Image
Solar = best decentralized lowest marginal cost of installation. Can supply all low density residential.

Nuclear = best centralized at-scale power for high density usage. Supplies factories, major cities, etc.

Nuclear is by far the most efficient in terms of material Image
It's also the lowest CO2 emitting source of energy, period. If you want to minimize carbon emissions you build nuclear.

Right now it's expensive because of regulatory overhead and bureaucracy. Image
Read 4 tweets
Jun 3
Most people don't know the first iPhone was designed in 1994 by a company called General Magic, which started as an Apple project in 1989 when Marc Porat convinced then-CEO John Sculley the future of compute was a multimedia phone with touch screen

Jobs wasn't involved at all 🧵
Image
The project spun out as a company in 1990 with Apple taking a minority equity stake and Scully on the Board.

People credit Steve Jobs with his vision of the iPhone but this is fundamentally wrong. At the time Jobs was building NeXT.

The credit entirely belongs to Porat Image
By 1993 General Magic had 100 employees, having taken most of the team from MacOS 7.

Partnerships with Sony, Motorola, AT&T, Philips. New York Times called it "the most closely watched startup in Silicon Valley"

Rabbits roamed the halls to inspire creativity Image
Read 11 tweets
May 20
Am I too late to get into deep-tech / hardware / physics / science / engineering?

I didn't start my engineering degree until I was 24. Before that I was working in marketing and sales, I had a humanities degree, and for my entire life had been "not a math guy"

So no. Go do it
I didn't do chemistry or physics in high school.

So, at age 24, while selling moorage at a marina, I did Grade 11/12 chemistry and physics homework and wrote the high school equivalent exams.

My office was a portable on a construction site (with dog) Image
My first job after finishing a degree in the humanities was landscaping. I felt so much shame at not having 'done things right' to get some nicer job - I had friends going off to investment banks, consulting, MBAs, law school.

I was shoveling dirt in the rain. It sucked tbh
Read 17 tweets
May 18
DoD is deploying $9bn to unify the control systems of the Air Force, Army, Marines, Navy, Space Force into a single AI entity - SkyNet.

Joint All-Domain Command and Control (JADC2) requires hundreds of laser comm satellites.

This will bring the internet to space 🧵
Image
JADC2 will integrate sensor and communications data into an AI-powered network comms that links every branch of the Armed Forces.

Current generation satellite radios are easy to intercept and interrupt because the beam is wide - but lasers are tighter and more secure Image
Laser communications can also carry 10-100x more information because they operate at shorter wavelengths.

The upgrade to satellites will be like going from dial up to high-speed internet, and completely revolutionize internet bandwidth for in-space assets Image
Read 17 tweets
May 17
The only thing that actually makes sense to back a currency is a promise of energy or compute in the future.

This ties time value of money to opportunity landscape of new technology development.

Therefore resources are spent the most when there's the most to be built 🧵
The issue with fiat currency is it can be artificially created without any corresponding creation of value

It breaks as a proxy measure of value for this reason and so many areas of activity generate money without producing value.
Tying currency to a promise of future compute or energy means that to issue more currency you need to produce more capital - in the sense of non-labor factors of production.

Energy and compute are great emobidments of capital because they're nearly perfectly fungible
Read 6 tweets
May 15
In 1487 at the dedication of the Temple of Mayor the Aztec high priests sacrificed 80,000 prisoners over ten days.

Tenotchitlan had a population of 800,000 at the time, and the empire itself 5-6 million.

In 1521 the empire was defeated by 600 Spaniards under Cortez 🧵 Image
2 years previously Cortez had landed on the coast of Mexico with 600 men and 16 horses, and within a few months has been welcomed into the capital Tenotchitlan on friendly terms by the ruler Moctezuma II

The encounter spelled an inevitable doom for either side Image
The Spanish were shocked and disgusted by the common practice of human sacrifice upon arrival.

Meanwhile Moctezuma thought Cortez might've been the returning god, Quezalcoatl.

Then the smallpox started to spread Image
Read 13 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(