Jordan Taylor Profile picture
Jan 12, 2024 35 tweets 13 min read Read on X
By the artifice of Man and God is born a furnace that forges the future.

This is the big nuclear reactor thread!

A beginner's guide to the main reactor types, with lots of diagrams... Image
In this thread we'll cover:
1) Basics of fission & what's a moderator?
2) Light vs heavy water.
3) Light water reactors.
4) Gas Cooled reactors.
5) RBMK: The scary one.
6) Heavy water reactors & CANDU.
7) Fast breeders.
8) Generation IV reactors. Image
The Basics.

This is the nucleon binding energy graph: Heavy nuclei at the right release energy as they fission their way to the summit.

Nuclear power depends on atoms that do this after absorbing a thermal neutron, and that give off more neutrons during fission. Image
2/3 of a nuclear reactor's thermal energy comes from the fission of Uranium U235, which occurs as 0.7% of natural U238 deposits: The remaining 1/3 is fission of secondary products such as Plutonium Pu239.

The percentage of U235 or Pu239 in fuel is known as the enrichment number. Image
Moderation:

A fast neutron produced by fission has 1-10MeV of energy: Too high for dependable secondary fission. A moderator slows the neutrons down to increase the odds of a chain reaction 100 fold.

Moderators used are light water (H2O), heavy water (D2O) or graphite (C). Image
Light vs heavy water:

Light water is cheap, heavy water isn't.
Light water absorbs some neutrons, meaning enriched fuel if it's used as a moderator.
Heavy water doesn't absorb neutrons (much), so can run with un-enriched fuel.

Both need high pressure to stay liquid when hot. Image
Steadfast: The Pressurised Water Reactor

The most common reactor type. PWRs use light water as both coolant & moderator. The primary core cycle is pressurised to 150bar to keep it liquid at 315C, and a heat exchanger links it to a secondary cycle, making steam for power. Image
PWR pressurizer:

Despite the varying loads on the PWR, the primary circuit must be maintained at a pressure sufficient to maintain liquid flow throughout. This is done using a pressurizer, a dome shaped structure with heating coils & spray bar. Image
PWR pros/cons:
-Complex & expensive.
-Very high pressurisation.
-Needs enriched fuel (VERY enriched in submarines).
-Refuelling=extended downtime.
+Safety: Primary cycle is well isolated.
+Passive load following.
+Compact: Perfect for naval use.
+Can be modular. Image
Simple: The Boiling Water Reactor

A simpler, and potentially cheaper reactor type than the PWR, the BWR uses light water as moderator & coolant, making steam in the primary cycle at 285C to drive a steam turbine, without isolating flows between a primary & secondary cycle. Image
The BWR also uses a moisture separator and steam drier in the primary cycle to prevent droplets from impacting fragile systems like the turbine: A complex baffle flow separates moisture centrifugally and a superheater then dries the steam. Image
BWR cons:
-Safety: Fuel cladding damage would lead to radioactive material leaving the PCV.
-Safety: As in Fukushima, if the steam level lowers to the fuel bundles, hydrogen gas results.
-Larger pressure vessels make modular design harder. Image
BWR pros:
+Simple, cheap design.
+Primary cycle coolant pressure less than half that of a PWR. Image
Sophisticated: The Gas Cooled Reactor

Graphite moderated, CO2 cooled, the GCR and advanced GCR (AGR) were primarily used in the UK & France, where their ability to use natural or slightly enriched Uranium was useful in a world with fuel enrichment dominated by the USSR & USA. Image
For their 660MW electrical power, the AGRs were massive, with a very low power density. They also ran hot with 640 Celsius coolant temperature at 40 bar. This necessitated a re-entrant coolant flow at ~280C for the graphite moderator, as graphite reacts with CO2 at high temps. Image
Gas cooled cons:

-Huge core size.
-To reach high temperatures, the original magnesium oxide cladding was replaced with stainless steel, which captures neutrons & lowers fuel burn efficiency.
-Secondary graphite coolant path.
-Cladding unsuited for long term water storage. Image
Gas cooled pros:

+Can be refuelled while in operation.
+High heat brings much higher thermal efficiency than PWRs (counteracted by inefficient fuel burn).
+Low power density is a safety benefit.

The AGR type was only built in the UK, with no more planned. Image
High Temperature Gas Cooled (HTGR)

Moderated by graphite & cooled by helium, HTGRs can reach a coolant temperature of 950 Celsius, at high thermodynamic efficiency. A few test reactors have been built since the UK's Dragon in 1965, plus 2 small commercial reactors in China. Image
Sinister: RBMK reactors

Unique to Russia, the large graphite moderated, light water cooled RBMKs featured natural Uranium fuel, a high power output and a flat-ended cylindrical pressure vessel. It was big, cheap, powerful...

And not always stable. Chernobyl used RBMKs.
The RBMK had many design flaws, one of the biggest being a strong positive void coefficient (since fixed): As water coolant was neutron absorber & not primary moderator, a rise in heat derived steam bubbles would *increase* reactivity, not decrease it, risking a thermal runaway. Image
Sturdy: The CANDU.

Canada had a unique challenge, and created a unique design response. Lacking both serious fuel enrichment and fabrication of large pressure vessels, they needed a solution that combined large reaction mass and small volume pressurised assemblies... Image
Heavy water cooled and moderated in the primary cycle, it featured small, pressurised calandria tubes carrying the fuel bundles & coolant inside a large, un-pressurised calandria with a heavy water reservoir.

CANDU is noted for it's safety & ease of refuelling while running. Image
Surprising: The fast breeder.

So we all like U235, but what about the other 99.3% of Uranium that is U238? Can we make use of that and boost our output 100-fold?

Yes. Enter the fast breeder reactor. Image
A core of highly enriched fuel (high U235) sustains a reaction without moderation, covered in a blanket of U238, which is bombarded by fast neutrons, generating Plutonium 239.

The reactor is cooled by multiple molten sodium cycles, eventually making steam for a turbine. Image
Superb: Generation IV reactors:

Safer, less waste, more efficient and with industrial process heat potential: There are 5 GenIV concepts we will go through to end this thread. Currently only China has built any: The helium cooled high temperature HTR-PM. Image
Very High Temperature Reactor (VHTR)

Designed for industrial heat and green hydrogen production plus electricity: The VHTR can run with an outlet temperature up to 1000C, though likely process heat applications are somewhat lower. It's compelling for a 'hydrogen economy'. Image
@NoahRettburg has a great thread on thermal generation of hydrogen, and why process heat matters.

But on with the show: The next Gen IV reactor...

Molten Salt Reactor (MSR)

With homogenous fuel dissolved in molten Fluoride salt, the MSR & it's fast breeder equivalent, the MSFR, need research but promise high process heat, enhanced waste actinide burning & safer reactivity coefficients than solid fuel fast reactors. Image
Sodium Cooled Fast Reactor (SFR)

Mixing fast neutron fuel cycles with a 550C, low pressure molten sodium coolant cycle and a large thermal reservoir, the SFR is a reasonably mature low waste solution with a 'thermal battery' effect that may work well on renewable grids. Image
Supercritical Water Cooled Reactor (SCWR)

Taking the boiling water reactor to it's physics-defying conclusion, the SCWR pressurises beyond 220 bar and heats coolant to 500-625C into it's supercritical state, neither liquid nor vapour, with very high system efficiency. Image
The SCWR seems intuitive & could be cheap, not needing coolant pumps of steam driers, but needs significant research: Cladding material development for extremes of heat & pressure, heat transfer research for phase changes in the water, the list goes on.
Lead Cooled Fast Reactor (LFR)

Cooling something with molten lead stretches the imagination, but lead coolant is low pressure, chemically inert and has good properties for a fast neutron reactor that can also provide plenty of industrial process heat into the bargain. Image
With a focus on waste, industrial process heat and hydrogen synthesis, the GenIV concepts have a definite 'net zero' feel, but they're not saviours and not easy.

Still, it's example of the reality of this century: Our challenges must be met with technology, not penury. Image
GenIV isn't quite here yet: Almost all nuclear new builds are GenIIIA PWR & BWR systems, but even that is great! It's better than coal, gas, solar or wind. Nuclear power offers to unshackle us from the bounds of earth.

We can, and must, do even better... Image
That's it for now: Upcoming threads will deep dive individual technologies and go into their economics. Stay tuned!

As ever, papers used in this thread are shown, all free downloads.

I hope you enjoyed this! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Jordan Taylor

Jordan Taylor Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @Jordan_W_Taylor

Jul 4
In April on a mountain in Chile the Vera Rubin observatory gathered first light, and this telescope will be world-changing! -Not because it can see the furthest… but because it can see the fastest!

The Vera Rubin telescope thread! The value of speed, and unique technology… Image
Who was Vera Rubin?

She first hypothesized the existence of dark matter, by observing that the rotation speed of the edge of the galaxy did not drop off with radius from the centre as much as it should. The search for dark matter, and other things, will drive this telescope… Image
Does it see a long way?

Yes, but it’s not optimized for that: The battle of the big mirrors is won by the Extremely Large Telescope which, yes, is meant to see a long way. Vera Rubin is not that big, but that doesn’t matter because it has a different and maybe better mission. Image
Read 22 tweets
Jun 20
Rotating detonation engines: Riding the shockwave!

A technology that could revolutionise aviation, powering engines with endlessly rotating supersonic shockwaves. It could bring us hypersonic flight, super high efficiency and more.

The detonation engine thread… Image
Almost all jet engines use deflagration based combustion, not detonation, but while fuel efficiency has been improving for decades, we're well into the phase of decreasing returns and need some game-changing technologies.

One is the rotating detonation engine (RDE). Image
To understand the appeal of RDEs, you need to know that there are two forms of combustion cycle: Constant pressure, where volume expands with temperature, and constant volume, where pressure goes up instead.

Most jet engines use constant pressure. RDEs use constant volume. Image
Read 21 tweets
Jun 6
As a new graduate I once had to sit down and draft an engine test program for a subsystem of a new model of Rolls-Royce aero engine. It was illuminating.

So here's a thread on some of the weirder things that this can involve: The jet engine testing thread! Image
Fan Blade Off!

Easily the most impressive test: A jet engine needs to be able to contain a loose fan blade. In the FBO test, either a full engine or a fan & casing rig in low vacuum is run to full speed, then a blade is pyrotechnically released.
Frozen.

The Manitoba GLACIER site in Northern Canada is home to Rolls-Royce's extreme temperature engine test beds. Not only must these machines be able to start in temperatures where oil turns to syrup, but in-flight ice management is crucial to safe flying. Image
Read 15 tweets
Apr 26
How can humans realistically travel to another star, and why will it be an all-female crew that does it?

In this thread: Sailing on light, nuclear pulses, using the sun as a telescope and how to travel to another solar system. The interstellar thread! Image
Slow starts…

The furthest man-made object from Earth, Voyager 1, is one of the fastest. Launched in 1977, it performed gravitational slingshots off Jupiter and Saturn and is heading to interstellar space at 17 kilometres per second.

How long until it reaches another star…? Image
Image
Um… a long time.

Voyager 1 is moving at 523 million km, or 3.5 AU, per year. Our nearest star from the sun, Alpha Centauri, is 278 THOUSAND AU away. If Voyager 1 was heading that way (which it isn't) it would take almost 80,000 years to get there.

Damn. Can we go any faster? Image
Read 30 tweets
Apr 11
How do we make nuclear new builds cheaper?

It's the defining question of the energy market. Nuclear power is clean, consistent, controllable and low-carbon, but in the West it's become bloody expensive.

Are there construction techniques available to Make Atomics Great Again? Image
The problem.

Hinkley Point C, the world's most expensive nuclear plant, could hit a cost of £46 billion for 3.2 gigawatts of capacity, which is monstrous. Clearly nuclear needs to be cheaper, and in many places it already is. What are our options? Image
Steel bricks/ steel-concrete composites.

Construction can be chaos, and it's expensive chaos: Many bodies,many tasks, serious equipment. The more complexity, the greater the chance of delay, and delays during construction are the most expensive sort.

Steel bricks could help… Image
Read 17 tweets
Mar 14
You can't depend on the wind, and you can't sunbathe in the shade, but the sea never stops moving… can we power our civilization with the ocean wave?

The wave power thread! Image
If not wind, why not waves?

It's a fair question. Wave power is much more predictable than the wind, it's available 90% of the time and has a higher power concentration per square metre of any renewable energy source.

But it's almost unheard of. Why is it so difficult? Image
Several things are important in wave power: How we collect the energy, how we use that energy to generate power, and how we store, control and deliver it.

We'll start with collection, which is divided into attenuators, point absorbers and terminators… Image
Read 26 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(