Jordan Taylor Profile picture
May 10, 2024 22 tweets 10 min read Read on X
Would you fly on an electric plane? And what technology is needed to make this unholy powertrain work? The challenges will lead to extraordinary designs...

This is the electric aviation thread! Image
In this thread we'll cover:

-Different electric & hybrid aircraft power systems.
-The challenge of full electric: Closing the energy gulf.
-Enabling tech: Batteries, motors, aerodynamics.
-Will it work?

Expect incredible concepts & links to specialist aerodynamics threads! Image
Cycle 1: Turbo-electric power.

A gas turbine engine with generator, DC buses & convertor drives electric motors, no battery storage: This could eat 10% efficiency, but buys the ability for integrated airframe concepts such as boundary layer ingestion & distributed propulsion. Image
Hybrid-electric.

Like a car engine, an aircraft engine is most efficient at it's design cruise condition. By using rechargeable batteries & electric motors, hybrid cycles try to smooth out engine demand so it spends more time at it's most efficient point. Image
Cycle 2: Series hybrid.

A turbo electric layout plus a battery bank, the propulsor is electrically driven. Heavier even than the turbo electric cycle, it does however allow the engine to stay at optimal running condition, a net benefit for short haul & regional aircraft.
Image
Image
Cycle 3: Parallel hybrid.

A transmission box allows either engine or electric motor to power the prop. More complex but lighter than series hybrid with fewer conversion losses, but leads to the engine running off-design more often. Considered less efficient than series hybrid. Image
The trouble with hybrids is that, just as a hybrid car is best at town & city driving, a hybrid plane is best at short haul & general aviation: Long haul aircraft spend too long at their design condition for hybrid power systems to be of much use.

What about pure electric? Image
Cycle 4: Battery electric.

Conceptually the simplest setup, it's simultaneously the most "green", as a zero emissions aircraft, and the most difficult, which we'll get into.

Pictured: The RR 'Spirit Of Innovation' demonstrator. At 345mph, the fastest electric plane.
Image
Image
If we do it, it won't be for convenience: The specific energy of kerosene is 48 times higher than lithium ion batteries: An unbridgeable gulf?

Electric motors are 90%+ efficient while the thermodynamic efficiency of gas turbines are ~55%, making the ratio 'only' 1:29 Image
Enablers 1: Batteries.

Li-ion batteries, the gold standard, max at ~250Wh/kg.
Li-sulphur, on the Airbus Zephyr have shown 500Wh/kg but so far only 1350 cycles.
Solid state: Fast-charging and 500-1000Wh/kg. Under development.
Li-Air: Potentially 1700Wh/kg, but a long way off.
Image
Image
Enablers 2: Motors.

Conventional motors have a specific power of 1-5kW/kg, less than gas turbines.

-In 2021 H3X & Wright Electric tested 250kW & 2MW motors with 13 & 10kW/kg.

The EU sponsored ASuMED project is developing high temperature superconductor motors for 20kW/kg. Image
Batteries of 800Wh/kg are probably a minimum for electric aviation: If we assume that 1000 is achievable then that brings the usable specific energy ratio with kerosene down to 1:7.

This means that aerodynamics must do some heavy lifting to get it down to low single figures... Image
Enablers 3: Distributed propulsion.

Electric powertrains allow this: Extremely high bypass low pressure ratio propulsors with blown wing effects maximizing efficiency.

The hybrid electric EcoPulse aircraft shown is halfway through flight testing proving this concept. Image
A thread on distributed propulsion is linked below, featuring the ONERA Dragon concept: A medium range airliner showing a 7%-12% efficiency benefit from distributed propulsion alone. Hybrid power storage could increase this further.
Enablers 4: Boundary layer ingestion.

This wake energy management technique reduces flow field energy loss and can improve the efficiency of propulsors by embedding them in the aircraft boundary layer. A structurally robust well-sited prop is needed.
Enablers 5: Blended wing/ body design.

Definitely the biggest ask of airframers & airports, and not strictly necessary, it remains a potentially optimal platform from an efficiency standpoint, and works well with distributed propulsion & BLI.
The NASA N3-X concept uses all three aero enablers in a long range turbo-electric flying wing with cryocoolers enabling superconducting motors and higher turbine inlet temperature.

60% more fuel efficient than current state of the art, it's an idealised design but instructive. Image
Another rich opportunity for hybrid power is helicopter aviation, where it would be worth 10% in efficiency all on it's own without other improvements. Airbus recently tested this as part of an emergency back up power system for the FlightLab helicopter. Image
Novel hybrid electric/ turbo-electric power architectures, with a gas turbine engine at the core, have huge potential from short to long range, and we should move that way, but the aerospace industry might not leap without a push.

What about pure electric aircraft..? Image
Frankly, pure electric is a lost cause everywhere except short range and city transport niches: The specific energy gulf is just too large.

But it's still important: Electric aviation's huge energy challenge forces it to deal with unconventional design, and this is it's value. Image
The city eVTOL niche is tiny, almost a joke, but it's the only electric aviation sector plausible right now, making it a technology incubator.

Inconsistent regulation could kill it dead, and it's important we don't do that: Technology grows from seeds, which we should water.
Image
Image
So let's hear it for the challenge of electric aviation, because it might, just maybe, be a catalyst that will move us beyond the tube, wing & twin configuration.

So the future might actually look like the future.

Papers used are shown, I hope you enjoyed this!


Image
Image
Image
Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Jordan Taylor

Jordan Taylor Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @Jordan_W_Taylor

Jan 31
The Yerkes Observatory in Wisconsin holds the world's biggest refracting telescope. Weighing almost 6 tons, with a 40” main lens, it's so well balanced that it can be moved by hand.

Finished in 1897, no bigger one was ever made. What did we do instead?

The telescope thread… Image
A refracting telescope uses convex lenses to focus light. Shown are the objective lens & eyepiece, with their respective focal distances: The ratio between these focal lens gives the magnification.

This also shows why the image in a simple refraction telescope is upside-down! Image
A basic (but incomplete) description of refraction is that changes to the local speed of light affects the direction of light waves as they enter & exit a medium like glass or water. A convex lens exploits this.

Different wavelength’s diffraction angles differ slightly though… Image
Read 22 tweets
Jan 24
This is the NASA Ames low speed wind tunnel, the biggest in the world. It can fit full sized planes and takes up to 104MW of power to run!

But why use a wind tunnel, and what problems do you run into when trying to make it smaller? Let's go deep.

The wind tunnel thread… Image
Why use one? For one thing, wind tunnels let you measure and visualize the flow field, using smoke, particle image velocimetry or a host of other techniques.

You can also directly measure the forces on your model with a force measuring ‘sting’ as shown. Image
Strange tunnels:

This is a rolling road tunnel for Formula 1 cars. The road belt needs to have a velocity that matches the airflow, and the force in the wheels needs measuring: This can be with stings on each wheel, or in pressure sensors under the ‘road’. Image
Read 23 tweets
Jan 4
An advanced Nuclear Power rabbit hole! This is not your father's atom bashing.

For your reading pleasure I've now covered five of the six Generation IV nuclear reactors: Clean, safe, hot running high tech beasts, the first have started arriving.

Let's go through them… Image
Bringer of Alchemy: The molten salt fast reactor, thorium transmutation and the ‘infinite energy machine’.

In its liquid fuel form, it's definitely the most complex reactor type! But solid fuel, salt cooled reactors could appear soon. Image
Read 13 tweets
Jan 3
Let's dive into the most Metal reactor of all! A high temperature nuclear reactor with a heart of liquid sodium.

Why cool a core with water when you can use molten metal?

The Sodium cooled fast reactor (SFR)! A GenIV reactor deep-dive… Image
SFRs are expensive and complex, but they have interesting abilities, unlocking:

*Fuel breeding.
*Waste burning.
*Long periods between refuels.
*High temperature thermal cycles.
*Industrial process heat.
*Energy storage. Image
The trouble with water.

Most nuclear reactors in the world are light water reactors (LWRs), and water coolant has many advantages: It's a good heat exchange medium and neutron moderator, is stable and easy to pump.

But it boils at too low a temperature, so needs high pressure. Image
Read 18 tweets
Dec 27, 2024
The death of steel.

Big ships are sturdy, but they're not immortal. Over time their maintenance costs soar until, after 30 years or more, they become more valuable as recycled metal and are sold to a scrapyard.

What happens next will surprise you… Image
At the murky end of our supply chains lies this: The Chittagong breaking yards in Bangladesh, one of many places where old ships go to die.

But how is shipbreaking done,  what are the consequences, and is there a better way?

A thread. Image
By last year, the world's combined merchant shipping fleet reached a total of 2.3 Billion deadweight tons. 85% of this is massive bulk carriers, container ships and oil tankers. That's a lot of metal that needs recycling or disposal.

So: Do you break them, or scuttle them? Image
Read 24 tweets
Dec 19, 2024
What's Britain good at?

Is it an island of fog breathing has-beens, or a nascent industrial juggernaut? What, in fact, does Britain do well?

Here's a thread of a few surprising things… Image
Image
Motorsport!

Almost all of the world's Formula 1 teams are based in this tiny region in Oxfordshire & Northamptonshire, which also supports 3,500 companies and 40,000 people in motorsport.

This is known as 'Motorsport Valley’ (not actually a valley). Image
The jet engine!

The world's 2nd largest widebody jet engine maker, Rolls-Royce, is a UK company, and also manufactures engines for helicopters, fighter aircraft and the F35B vertical lift system.

The thread below covers a small slice of their wizardry.
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(