Bloom Lab Profile picture
Sep 15, 2024 16 tweets 6 min read Read on X
Here is analysis of HA mutations in H5 influenza case in Missouri resident without known contact w animals or raw milk.

TLDR: there is one HA mutation that strongly affects antigenicity, and another that merits some further study.
As background, CDC recently released partial sequence of A/Missouri/121/2024, which is virus from person in Missouri who was infected with H5 influenza.


Here I am analyzing HA protein from this release, GISAID accession EPI_ISL_19413343cdc.gov/bird-flu/spotl…
Sequence covers all of HA except signal peptide, and residues 325-351 (sequential numbering) / 312-335 (H3 numbering). The missing residues encompass HA1-HA2 boundary, and any missed mutations there unlikely to affect antigenicity or receptor binding, but could affect stability.
In sequenced part of HA, are 4 mutations relative to current H5 2.3.4.4b candidate vaccine virus, 2 of which are also mutations relative to most (but not all) cattle HAs

The 2 mutations in all cattle viruses unlikely to be relevant, so I will focus on the 2 more unique mutations Image
First mutation is A160T (H3 numbering), which is A172T in sequential numbering and A156T in mature H5 numbering.

From our deep mutational scanning (), we know this mutation strongly reduces neutralization by sera from current candidate vaccine virus. biorxiv.org/content/10.110…
Image
Because deep mutational scanning flagged this mutation, @bdadonaite previously performed neutralization assays showing A160T (a la A172T, A156T) causes a 10- to 100-fold drop in neutralization by sera from ferrets exposed to the current candidate vaccine virus. Image
The A160T (a la A172T, A156T) mutation is found in a handful of dairy cattle H5 sequences, although most lack the mutation. This can be seen by looking at @LouiseHMoncla’s nextstrain build: nextstrain.org/avian-flu/h5n1…
Image
This mutation underscores challenges of candidate vaccine virus approach


We don’t know what (if any) virus might eventually spread in humans, but would be unfortunate to stockpile American Wigeon or Astrakhan based vaccine, only to have A160T virus spread
Fortunately, CDC seems attentive to this issue, as their report correctly () notes the potential impact of this mutation on candidate vaccine viruses.cdc.gov/bird-flu/spotl…
Second mutation is P140S (H3 numbering), which is P152S in sequential numbering and P136S in mature H5 numbering.

This mutation is only found in a single sequenced dairy cattle virus, which has an HA identical to the Missouri case over the covered region. Image
Although P140S is on head of HA in classically defined antigenic region A, deep mutational scanning shows it does not have much effect on neutralization by ferret or mouse sera elicited by candidate vaccine viruses (). dms-vep.org/Flu_H5_America…
Image
However, some attention should be given to possibility P140S (a la P152S, P136S) could slightly impact receptor binding. In our deep mutational scanning (), P140S modestly improves entry into a2-6 expressing cells.dms-vep.org/Flu_H5_America…
I emphasize any impact of P140S is speculative: in deep mutational scanning its effect is modest, and we have not validated that initial finding further. Additionally, P140S is not a receptor contact site, although it is proximal to receptor binding loops.
However, further study of P140S (a la P152S, P136S) is merited by combined facts that

(1) it causes modest improvement a2-6 usage in deep mutational scanning, and

(2) it was found in human Missouri case despite being in only one of many known dairy cattle sequences.
Thanks to CDC (and Missouri Dept of Health) for releasing the partial sequences alongside their careful analysis ()cdc.gov/bird-flu/spotl…
Deep mutational scanning data I used to interpret the mutations is all available at dms-vep.org/Flu_H5_America…

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Bloom Lab

Bloom Lab Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @jbloom_lab

Jan 21
In new study, we find dramatic differences in specificities of serum neutralizing antibodies in infants w single infection by a recent SARS-CoV-2 strain versus adults/children imprinted by an early viral strain.

biorxiv.org/content/10.110…
As background, immune response to a virus is “imprinted” by first exposure, since later exposures to new viral strains often activate pre-existing B-cells.

For SARS-CoV-2, most people globally imprinted by an early viral strain from either vaccination or infection in 2020-2021.
However, small but growing fraction of population has instead been imprinted by more recent viral strain.

Specifically, we compared adults/children imprinted by original vaccine then infected w XBB* strain in 2023 vs infants only infected w XBB* in 2023. Image
Read 9 tweets
Nov 21, 2024
I’ve updated SARSCoV2 antibody-escape calculator w new deep mutational scanning data of @yunlong_cao @jianfcpku

My interpretation: antigenic evolution currently constrained by pleiotropic effects of mutations on RBD-ACE2 affinity, RBD up-down position & antibody neutralization
First, the updated escape calculator is at

As shown below, it is remarkable how much antigenicity of RBD has changed over last 4 yrs. jbloomlab.github.io/SARS2-RBD-esca…Image
Updated data for calculator from this paper by @yunlong_cao’s group (nature.com/articles/s4158…), described in this thread by first author @jianfcpku:
x.com/jianfcpku/stat…

Calculator show how much mutations at each RBD site escape binding by set of neutralizing antibodies
Read 13 tweets
Nov 16, 2024
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson Good observations. See also this thread posted by @SCOTTeHENSLEY:

I have added a few notes to the bottom of that thread.

To recap here:bsky.app/profile/scotte…
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY To add to thread linked above, human British Columbia H5 case has a HA sequence (GISAID EPI_ISL_19548836) that is ambiguous at *both* site Q226 and site E190 (H3 numbering)

Both these sites play an important role in sialic acid binding specificity
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY If you are searching literature, these sites are E190 and Q226 in H3 numbering, E186 and Q222 in mature H5 numbering, and E202 and Q238 in sequential H5 numbering (see: )dms-vep.org/Flu_H5_America…
Read 6 tweets
Oct 8, 2024
Below is brief analysis of HA mutations in two recent cases of H5N1 influenza in humans w contact w dairy cattle in California.

Summary is that while virus continues to evolve, nothing about HA mutations in these human cases is obviously alarming. Image
As background, CDC reported several recent cases of H5 influenza in California.

CDC and California DOH recently shared sequences of two of these cases via GISAID.
cdc.gov/media/releases…
California human cases share two HA mutations relative to "consensus" dairy cattle virus HA:

D95G & S336N in H3 numbering (D88G & S320N in H5 numbering; D014G & S336N in sequential numbering).

Both these mutations also in some dairy cattle HAs, so not unique to human cases. Image
Read 10 tweets
May 25, 2024
In new study led by @bdadonaite, we measure how all mutations to H5 influenza HA affect four molecular phenotypes relevant to pandemic risk:


Results can inform surveillance of ongoing evolution of H5N1. biorxiv.org/content/10.110…
Image
To measure how all HA mutations affect those phenotypes, we created pseudovirus libraries of HA from WHO clade 2.3.4.4b vaccine strain.

Pseudoviruses encode no genes other than HA, so can only do a single cycle of infection making them safe for biosafety-level-2. Image
First, we measured how all mutations affected HA-mediated cell entry, which is essential for viral fitness

See heatmap below, which is easily visualized interactively at

Some sites constrained (orange); others w many well tolerated mutations (white/blue) dms-vep.org/Flu_H5_America…
Image
Read 15 tweets
Apr 20, 2024
In new study led by @bblarsen1 in collab w @veeslerlab @VUMC_Vaccines we map functional & antigenic landscape of Nipah virus receptor binding protein (RBP)


Results elucidate constraints on RBP function & provide insight re protein’s evolutionary potentialbiorxiv.org/content/10.110…
Nipah is bat virus that sporadically infects humans w high (~70%) fatality rate. Has been limited human transmission

Like other paramyxoviruses, Nipah uses two proteins to enter cells: RBP binds receptor & then triggers fusion (F) protein by process that is not fully understood
RBP forms tetramer in which 4 constituent monomers (which are all identical in sequence) adopt 3 distinct conformations

RBP binds to two receptors, EFNB2 & EFNB3

RBP’s affinity for EFNB2 is very high (~0.1 nM, over an order of magnitude higher than SARSCoV2’s affinity for ACE2) Image
Read 12 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(