Here are the locations of the mutations on the HA structure. Two are on the head, one is in the stalk.
The California human cases *lack* the A160T (a la A156T or A172T) mutation that was present in a recent human case from Missouri and is known to cause a substantial antigenic change.
Here is link to interactive HA structure where you can look at mutations and associated deep mutational scanning data: dms-viz.github.io/v0/?data=https…
I apologize for typo here, it is S323N in H3 numbering, not S336N. The table attached to the above post is correct.
We used pseudovirus deep mutational scanning to characterize all mutations to a recent H3N2 HA. This approach uses virions that can only undergo one round of cell entry & so are not pathogens capable of causing disease.
As can be seen below, constraint due to mutational impacts on cell entry are widely distributed across HA including receptor-binding pocket and fusion peptide. But mutational constraint due to HA stability is concentrated at trimer and HA1-HA2 interface.
In new study, we find dramatic differences in specificities of serum neutralizing antibodies in infants w single infection by a recent SARS-CoV-2 strain versus adults/children imprinted by an early viral strain.
As background, immune response to a virus is “imprinted” by first exposure, since later exposures to new viral strains often activate pre-existing B-cells.
For SARS-CoV-2, most people globally imprinted by an early viral strain from either vaccination or infection in 2020-2021.
However, small but growing fraction of population has instead been imprinted by more recent viral strain.
Specifically, we compared adults/children imprinted by original vaccine then infected w XBB* strain in 2023 vs infants only infected w XBB* in 2023.
I’ve updated SARSCoV2 antibody-escape calculator w new deep mutational scanning data of @yunlong_cao @jianfcpku
My interpretation: antigenic evolution currently constrained by pleiotropic effects of mutations on RBD-ACE2 affinity, RBD up-down position & antibody neutralization
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY To add to thread linked above, human British Columbia H5 case has a HA sequence (GISAID EPI_ISL_19548836) that is ambiguous at *both* site Q226 and site E190 (H3 numbering)
Both these sites play an important role in sialic acid binding specificity
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY If you are searching literature, these sites are E190 and Q226 in H3 numbering, E186 and Q222 in mature H5 numbering, and E202 and Q238 in sequential H5 numbering (see: )dms-vep.org/Flu_H5_America…
Here is analysis of HA mutations in H5 influenza case in Missouri resident without known contact w animals or raw milk.
TLDR: there is one HA mutation that strongly affects antigenicity, and another that merits some further study.
As background, CDC recently released partial sequence of A/Missouri/121/2024, which is virus from person in Missouri who was infected with H5 influenza.
Here I am analyzing HA protein from this release, GISAID accession EPI_ISL_19413343cdc.gov/bird-flu/spotl…
Sequence covers all of HA except signal peptide, and residues 325-351 (sequential numbering) / 312-335 (H3 numbering). The missing residues encompass HA1-HA2 boundary, and any missed mutations there unlikely to affect antigenicity or receptor binding, but could affect stability.