Pacmann Media Profile picture
Curated news about Startup, AI, Tech Career, Software Engineering and Tech Business Our Training: 🔽 https://t.co/1d34QbvoIS

Jun 21, 2021, 34 tweets

Gini loh cara abang kurir nyari jalan tikus🛵🐀
Introduction to Particle Swarm Optimization
.
.
.
A thread

“MISI PAKETTT!!”

Hayoo siapa yang semangat waktu dengar kata itu. Mimin yakin deh, yang awalnya mager dan rebahan pasti langsung semangat. 11-12 lah sama keterima SBMPTN 🤣🤪

Tapi kalian pernah kepikiran gak sih jalan tikus si abang kurir? Coba tebak mereka nemunya dari mana hayoo

Eitss daripada agak ngaco, mending mimin kasih tau cara DATA SCIENTIST menyusun jalan pintas buat kurir! Check it out yaa!

First of all, kalian harus paham tentang matematika optimisasi nihh guys. Buat kalian yang sudah baca thread tentang online shop kemarin pasti udah ga asing kan?

Oiya, kalian tau gak, ternyata fenomena pengantaran kurir ini dapat dimodelkan secara matematis menggunakan TSP atau Travelling Salesman Problem. Intinya, perlu ditemukan jalan terpintas sehingga mendapatkan biaya.

Pada permasalahan optimisasi ini, akan banyak dijumpai solusi solusi dengan metode Metaheuristik.

“Hmmmm metode metaheuristik itu apa min?”🧐🧐

Metaheuristik adalah metode pencarian solusi berbasis iterasi dan prinsip keacakan untuk menemukan solusi terbaik. Metode ini memerlukan perhitungan kompleks yang berulang sampai menemukan titik optimal. Oleh karenanya, akan sedikit sulit bagi manusia tetapi mudah bagi komputer.

Keunggulan metode ini adalah meskipun permasalahan makin kompleks, tetapi hasil yang didapat akan tetap sesuai/optimal. Maka dari itu, cara ini cocok untuk mendata dan memprediksi jalan-jalan tikus baru para kurir hehehe

Uniknya, ada lho satu metode metaheuristic yang meniru perilaku sosial para kawanan ikan dan burung! Iya, seperti gerakan sekumpulan burung yang mencari makan

Namanya adalah PSO atau Particle Swarm Optimization. Pertama kali ditemukan oleh Eberhart dan Kennedy pada 1995. Dan sampai saat ini, PSO masih sering digunakan dan terus diupdate keoptimalannya. Tapi, bukan berarti sebelum 1995 belum ada kurir ya, guys 😜

Bahkan begitu canggihnya, PSO ini sampai bisa digunakan untuk menentukan corak dan warna dari seragam TNI lho! Menarik kann PSO inii.

Dalam pemodelan sistem pengantaran (kurir), dapat dianalogikan ke parameter PSO. Para kurir dapat dianalogikan sebagai kawanan burung. Ada juga unsur kecepatan setiap kurir merespon perubahan. Kemudian hal yang akan dioptimalkan adalah jarak titik pengantaran guys.

Oh iyaa perlu diingat yaaa, proses ini tidak berlangsung dalam 1 kali proses. Oleh karenanya, jalan terbaik menuju rumah akan ditemukan seiring waktu dan iterasi.

(1) Nahh, berikut adalah parameter yang harus ditentukan sebelum dilakukan simulasi. Parameter di samping menggambarkan perilaku sosial partikel ke dalam ekspresi matematis. Fun fact, nilai-nilai koefisien tersebut masih terus dicari loh sampai sekarang mana yang paling optimal

(2) Kemudian dilakukan inisialisasi rumah rumah tujuan dengan titik koordinat peta. Bisa beragam ya guys, menyesuaikan dengan lokasi di kota kamu. Di sini mimin kasih contoh untuk kota tercinta mimin, Surabaya hehehe 🔥🌞

(3) Jangan lupa inisialisasi lokasi para kurir di koordinat acak. Ingat, metaheuristik adalah metode dengan prinsip keacakan. Oiya, pada awalnya, kecepatan para kurir dimulai dari nol yaa.

(4) Uji nilai fitness atau kecocokan. Dalam hal TSP, fitness value adalah jarak kurir dengan rumah / tujuannya. Ini dilakukan untuk menentukan PBest dan Gbest. Secara matematis tertera di gambar ini ya guyss. Gampang kok, cuma phytagoras yang dimodifikasi terhadap vektor 😬

(5) Secara intuisi, berarti kurir kurir lain akan mengikuti pergerakan dari individu Gbest (jojo).

Gerak yang berlaku adalah gerak relatif karena baik acuan(Gbest) dan partikel(kurir) sama sama bergerak menuju tujuan(rumah). Proses mengikuti pergerakan ini mulai masuk ke dalam inti dari PSO

(6) Ingat kan kecepatan yang tadi kita bahas, Nah sekarang kecepatan masing masing kurir berubah karena harus mengikuti GBest. Pergerakan dapat digambarkan dalam notasi vektor.

“Oiya min, itu r variabel apalagi?” 🤔🤔

r itu adalah angka acak yang terdistribusi normal. Sekali lagi, hal tersebut adalah implementasi dari prinsip keacakan. Jadi kecepatannya tergantung dari arah kurir saat ini, informasi dari kurir lain(sosial), dan keyakinan kurir pada jalannya sendiri (kognitif)

(7) Setelah update kecepatan, pasti lokasi terbaru dari kurir juga berubah dong. Fenomena ini dijelaskan dari persamaan di bawah. Tidak hanya si Bejo, tetapi juga semua kurir juga bergerak relatif menuju tujuan.

(8) Kemudian, dari posisi terbaru itu, ditentukan kembali jarak setiap kurir ke tujuan (PBest) dan Siapa Gbest-nya.

Proses iterasi / pengulangan dijalankan dari step 4, guys. Jika Gbest masih dipegang oleh Jojo maka mereka akan tetap menuju jojo. Namun, jika Gbest berubah menjadi Tejo, maka mereka akan mengikuti Tejo

(9) Jika iterasi dilakukan semakin banyak, maka akan didapat jalan tikus yang makin ringkas, yeay! Asal ga ketemu tikusnya beneran aja 😨😰

(10) Iterasi juga dilakukan ke semua titik rumah rumah ya guys. Sehingga iterasi dilakukan per kurir, per jalur, dan per tujuan. Biar paket sampai ke rumah kalian dan terhindar dari kejadian …

Akhirnya didapat jalur terbaik Gbest dengan biaya dan jarak MINIMAL.

Kalau dijelaskan dalam Flowchart / Diagram alur bentuknya seperti ini guyss. Mudah kan dipahaminyaaa😁

Yeayyy, akhirnya kamu udah paham kan mekanisme PSO dan hubungannya dengan TSP atau “Kurir” Problem. Kamu juga bisa kok kalau mau terapin ini ke jalur kos-kampus kamu. Kan ada PACMANN yang hadir membantu kamu memahami AI dan ML untuk upgrade Skill kamu!

Kalau kalian tertarik buat PRAKTEK langsung ilmu optimasi ini, kebetulan banget besok ada Workshop "Optimasi Rute & Jadwal dalam Industri Manufaktur dengan Machine Learning". Yuk segera daftar di bit.ly/PendaftaranPac…

Atauu bisa juga nihh ikut non degree program Data Scientist dan Business Intelligence Pacmann aja! Bisa dulu nih cek apa aja yang akan kamu pelajarin bareng Pacmann di bit.ly/PacmannioTwitt…. See you di thread selanjutnya yaa!👋

Share this Scrolly Tale with your friends.

A Scrolly Tale is a new way to read Twitter threads with a more visually immersive experience.
Discover more beautiful Scrolly Tales like this.

Keep scrolling