#Cardiotwitter. Seems that the interest in the #mitral_annular_dynamics during pre ejection would justify a continuation.
1/ Firstly, I’ll return to the protosystolic peak velocity, it’s occurring before MVC. Thus there is no such animal as peak isovolumetric velocity or acceleration. But does it matter, what we call it, and what does the peak protosystolic velocity mean physiologically? Image
2/ It is the peak velocity of longitudinal shortening before MVC. At this point, the load is low (= LA pressure), so it is related to the velocity of unloaded shortening. But this occurs before peak rate of force development, and is not a contractility measure. Image
3/ It is also dubious that the peak protodiastolic velocity is the peak velocity of unloaded shortening. Protodiastolic motion is terminated by MVC, which will influence the peak. Thus it is unlikely to be useful.
4/ What about IVC duration? As shown, it can be measured by TDI, although older publications have got it wrong, by including protosystole. Remember, true IVC is measured by Doppler flow. with sample volume between LVPT and mitral orifice. Image
5/ IVC duration, is inversely related to the (mean) rate of tension (pressure) development, and directly related to the SBP, as, for a given rate of force development, it takes longer time to reach a higher pressure. Thus, IVC is both pre- and afterload dependent.
6/ The closest measure to contractility, is the peak rate of force development, which can be measured by peak dP/dt. It occurs during IVC. As this is before AVO, it is actually afterload independent, but still, of course preload dependent by the Frank-Starling mechanism.
7/ Remember, if there is a small MR, it is measurable by Doppler, as long as the MR do not cause LA pressure rise. Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Asbjørn Støylen 🇳🇴🇩🇰

Asbjørn Støylen 🇳🇴🇩🇰 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @strain_rate

Apr 18
Old misconceptions become as new. A 🧵 A recent paper focusses on pre ejection velocities as a contractility measure. In addition, the authors maintain that these velocities are isovolumic contraction, which they also maintain, is load independent. pubmed.ncbi.nlm.nih.gov/37816446/
All three concepts are wrong. True, the peak contraction velocity (peak rate of force development) occurs before AVO, and thus is afterload independent. But it's not preload independent and thus not a true contractility measure. pubmed.ncbi.nlm.nih.gov/13915199/
Image
2/ Peak RFD corresponds to peak dP/dt, which is during IVC,m but closest to the AVO. pubmed.ncbi.nlm.nih.gov/5561416/
Image
Read 13 tweets
Apr 14
🧵 on atrial systole. 1/ Already in 2001, did we show that both the early and late filling phase was sequential deformation propagating from the base to the apex. pubmed.ncbi.nlm.nih.gov/11287889/
Image
2/ This means, both phases consist of a wall elongation wave, generating an AV-plane motion away from the apex. So what are the differences? Image
3/ Only e’ correlates with MAPSE, so the elastic recoil is finished in early systole, while a’ do not, so atrial systole is a new event, caused by the next atrial contraction. pubmed.ncbi.nlm.nih.gov/37395325/
Read 12 tweets
Apr 10
🧵1/ Sorry, I accidentally deleted the first tweet in this thread, here is a new and slightly improved version. Looking at the physiology of AVC propagation velocity, there are confounders galore, so taking it as a marker of fibrosis, is premature, to put it mildly.
2/ Firstly, The AVC is an event of onset of IVR, i.e at a part of heart cycle with relatively high cavitary and myocardial pressure. This may contribute to wall stiffness, which again may affect (probably increase) wave propagation velocity. Image
3/ Secondly, This may affect AS patients; who may have a higher wall/cavity pressure at end systole than controls, and thus higher pressure related stiffness.
Read 11 tweets
Apr 10
🧵1/ Looking at the physiology of AVC propagation velocity, there are confounders galore, so taking it as a marker of fibrosis, is premature, to put it mildly.
2/ Firstly, The AVC is an event of onset of IVR, i.e at a part of heart cycle with relatively high cavitary and myocardial pressure. This may contribute to wall stiffness, which again may affect wave prpagation velocity.
3/ Secondly, AS patients may have a higher wall/cavity pressure at end systole than controls, and thus higher pressure related stiffness.
Read 7 tweets
Apr 4
🧵 On early diastole. 1/ It is important to differentiate relaxation and myocyte elongation. Relaxation means tension devolution, due to the removal of Ca, and dissolution of actin/myosin cross bridges. Elongation means volume expansion. They are not simultaneous. Image
2/ Myoccyte relaxation actually starts during ejection at the time of peak pressure, the decreasing pressure during ejection shows decreasing myocyte tension. pubmed.ncbi.nlm.nih.gov/6227428/
3/ Simultaneously, ejection continues, chiefly due to inertia, until overcome by the Ao-LV pressure gradient, when AV closes. Thus, there is simultaneous myocyte relaxation (tension↓) and volume ↓ (= myocyte shortening). Here is blood flow / myocardial deformation interaction
Read 17 tweets
Mar 25
🧵1/ The E/A fusion in mitral flow with higher HR is well known, normally occurring around HR 100. Image
2/ also, it should be well known that this occurs because the diastole shortens more with high HR than systole. But why?
3/ In an early study of intervals during exercise, we showed that the RR-interval and DFP, but not LVET shortened in parallel < HR 100. > HR 100 (< RR 600) Both LVET, DFP and RR interval shortened in paralell, but at a slower rate. pubmed.ncbi.nlm.nih.gov/14611824/

Image
Image
Read 8 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(