1/6 Does India have a problem with 'just transition' of coal mining workers?
I spent some time today looking through the micro-data of the 2018-19 Periodic Labour Force Survey.
Thread.
2/6 In the 12 districts with the highest reported shares of coal mining employment (primary usual status): 1. Agriculture employment was a larger reported employer than coal in all but one. 2. Labour market exclusion was 1-2 orders of magnitude larger than coal employment.
👇
3/6 NB: exclusion from the labour market does not include people in education.
Thus, even in the most coal intensive districts, the challenge is not creating alternative employment for coal miners as we transition away from coal.
It's a problem 2 orders of magnitude larger.
4/6 Jobs for: 1. The substantially larger part of the population still stuck in unproductive agriculture even in these districts. 2. For the population excluded from the labour market. 3. The 15-40% of the population in education, entering the labour market tomorrow 👇.
5/6 As long as coal districts continue with huge shares of their populations in what Lewis called the 'subsistance' sector, labour market outcomes for workers moving out of coal will continue to be terrible, regardless of what sectoral 'just transition' policies are implemented
6/6 Thus, the framing of just transition policies needs to be much more expansive in a country like India. It is not about unaffordable payoffs or skilling programs of a few thousand miners (a la Spain).
It is about the country's and coal districts' entire development model.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Clean energy technologies grew strongly in 2023. Solar PV, driven by China, grew 420 GW and wind around 120 GW.
That's another ~550 TWh of clean electricity coming online this year (a lot of this capacity came online at the end of 2023, and will only be felt fully in 2024)
Extreme weather, notably very bad droughts, and continued Covid reopening in the aviation sector and China's transport sector drove around 70% of the increase in emissions at the global level.
1/n Today the @IEA released a special report on the role of coal in net zero transitions. With this thread I want to highlight some of the key findings of the report.
Thread iea.org/news/achieving…
2/n Firstly, energy transitions are not and cannot be just about coal. In the central scenario in our report, advanced economies act strongly this decade already on emissions from oil and gas, as well as coal.
3/n But for three reasons, we need to focus on coal: 1.It’s the largest source of CO2, and far from declining 2.It’s increasingly under pressure in electricity
3.Coal is important for local jobs and development
So what are the key messages?
2/10
Firstly, this book gets an A-plus for the pun (visual and titular) that you get right from the cover.
@Rukmini is a data journalist from Chennai, one of the field's Indian pioneers and a leading voice in interpreting India's covid experience.
3/10
Her book brings together four key characteristics of a good data journalist.
First, she has a sensitivity to the importance of the process of data production. A fascinating description of how all is not what it seems in data on sexual assualt is a case in point.
1/n Today we published a model-based assessment of the grid integration costs of VRE.
Note: we only look at profile and balancing costs, not network costs.
Here I summarize the results in 6 easy tweets.
2/n In all scenarios we study, a short-term 'optimal' level of VRE is substantially higher than current levels, in the order of 40% of total generation.
This is robust to assumptions on demand, storage cost, cost of capital, retirement of end of life assets, etc.
3/n The substitution of expensive energy with cheap VRE allows total system costs to decline as we approach 'optimal VRE', even as total system-wide fixed costs go up.
Basic point: cheap energy + expensive capacity is a winning combination for substantially higher VRE.
1/n We ended 2020 with the news that India's power demand cross 180 GW for the first time. Unusually, this occurred in December, when power demand usually peaks is in summer?
What is going on here? Is it sign of the economic recovery?
Short thread.
2/n Firstly, as I have been repeating, we need to look carefully at both base effect and time period when looking at demand growth.
Monthly demand smooths out daily fluctuations, and comparing 2020 against both 2019 and 2018 shows the importance of the base effect. 👇
3/n Compared against 2018, 2020 monthly demand has registered only a few months of growth since the lockdown effectively ended in June.
Because of the collapse in demand in the second half of 2019, the picture looks more optimistic if we compare against 2019 (low base effect)
At 140 pages, I can't summarize the whole thing in a single thread, but I can do a series of threads.
Today's: H2 in the Indian power sector.
2/n We do a bottom up assessment to 2050 of power demand across all sectors, including direct and indirect electrification (for electrolytic H2 production).
In the low carbon scenario, power demand reaches as much as 6200 TWh by 2050, with almost 1000 TWh of that for H2. 👇
3/n This would consume a very substantial chunk of India's maximum estimated technical potential for onshore wind and solar PV. 👇
The required rate of supply growth and land footprint may be challenging!
This reinforces the message: direct electrification wherever possible.