1/ #Python tip: Override the signature for *args with the __text_signature__ attribute:

def randrange(*args):
'Choose a random value from range(start[, stop[, step]]).'
return random.choice(range(*args))

randrange.__text_signature__ = '(start, stop, step, /)'
2/ The attribute is accessed by the inspect module:

>>> inspect.signature(randrange)
<Signature (start, stop, step, /)>
3/ Tooltips and help() will now be more informative:

>>> help(randrange)
randrange(start, stop, step, /)
Choose a random value from range(start[, stop[, step]]).
4/ Signature objects have their limitations.

In particular, it isn't able to express the actual calling patterns for range() which are a combination of two signatures:

range(start, stop, step=1)

• • •

Missing some Tweet in this thread? You can try to force a refresh

Keep Current with Raymond Hettinger

Raymond Hettinger Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!


Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @raymondh

25 Oct
1/ #Python tip: The functools.cache() decorator is astonishingly fast.

Even an empty function that returns None can be sped-up by caching it. 🤨

2/ Here are the timings:

$ python3.9 -m timeit -r11 -s 'def s(x):pass' 's(5)'
5000000 loops, best of 11: 72.1 nsec per loop

$ python3.9 -m timeit -r11 -s 'from functools import cache' -s 'def s(x):pass' -s 'c=cache(s)' 'c(5)'
5000000 loops, best of 11: 60.6 nsec per loop
3/ Behind the scenes, there is a single dictionary lookup and a counter increment.

Some kinds arguments will take longer to hash, but you get the idea, @cache has very little overhead.
Read 5 tweets
6 Sep
1/ #Python data science tip: To obtain a better estimate (on average) for a vector of multiple parameters, it is better to analyze sample vectors in aggregate than to use the mean of each component.

Surprisingly, this works even if the components are unrelated to one another.
2/ One example comes from baseball.

Individual batting averages near the beginning of the season aren't as good of a performance predictor as individual batting averages that have been “shrunk” toward the collective mean.

Shockingly, this also works for unrelated variables.
3/ If this seems unintuitive, then you're not alone. That is why it is called Stein's paradox 😉

The reason it works is that errors in one estimate tend to cancel the errors in the other estimates.

Read 5 tweets
31 Aug
Another building block for a #Python floating point ninja toolset:

def veltkamp_split(x):
'Exact split into two 26-bit precision components'
t = x * 134217729.0
hi = t - (t - x)
lo = x - hi
return hi, lo

Input: one signed 53-bit precision float

Output: two signed 26-bit precision floats

Invariant: x == hi + lo

Constant: 134217729.0 == 2.0 ** 27 + 1.0

>>> hi, lo = veltkamp_split(pi)
>>> hi + lo == pi
>>> hi.hex()
>>> lo.hex()

Note all the trailing zeros and the difference between the two exponents. Also both the lo and hi values are signed.
Read 6 tweets
9 Aug
#Python tip: #hypothesis is good at finding bugs; however, often as not, the bug is in your understanding of what the code is supposed to do.

Initial belief: The JSON module is buggy because #hypothesis finds cases that don't round-trip.

Bugs in understanding:
* The JSON spec doesn't have NaNs
* A JSON module feature is that lists and tuples both serialize into arrays but can't be distinguished when deserialized.

Initial belief:The colorsys module is buggy because #hypothesis finds conversions that don't round-trip

Bugs in understanding:
* color gamuts are limited
* colors in one gamut may not be representable in another
* implementations are constrained by underlying specifications

Read 9 tweets
24 Jun
#Python tip: Given inexact data, subtracting nearly equal
values increases relative error significantly more
than absolute error.

4.6 ± 0.2 Age of Earth (4.3%)
4.2 ± 0.1 Age of Oceans (2.4%)
0.4 ± 0.3 Huge relative error (75%)

This is called “catastrophic cancellation”.

The subtractive cancellation issue commonly arises in floating point arithmetic. Even if the inputs are exact, intermediate values may not be exactly representable and will have an error bar. Subsequent operations can amplify the error.

1/7th is inexact but within ± ½ ulp.

A commonly given example arises when estimating derivatives with f′(x) ≈ Δf(x) / Δx.

Intuitively, the estimate improves as Δx approaches zero, but in practice, the large relative error from the deltas can overwhelm the result.

Make Δx small, but not too small. 😟

Read 7 tweets

Did Thread Reader help you today?

Support us! We are indie developers!

This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!