We've created an interactive website to visualize >100,000 experimental measurements of how mutations to #SARSCoV2 RBD affect binding by antibodies & sera: jbloomlab.github.io/SARS2_RBD_Ab_e… Explore it to examine a wealth of information about the antigenic effects of viral mutations. (1/n)
Over the last 9 months, the indefatigable @tylernstarr & @AllieGreaney have used deep mutational scanning to measure how the 2,304 RBD mutations tolerated for protein folding / ACE2 binding affect recognition by 50 antibodies / sera. Data scattered across multiple papers. (2/n)
We have consolidated these data so they can be explored to understand antigenic impacts of mutations observed during genomic surveillance. Best way to look at data is to explore the website at jbloomlab.github.io/SARS2_RBD_Ab_e…, but here are some static-image summaries: (3/n)
First, we used experimental measurements to organize antibodies in the space of "viral escape." This organization mostly concordant with structural classification scheme of @cobarnes27@bjorkmanlab; you can click on specific antibody to see its sites of escape mutations. (4/n)
For any subset of antibodies, you can visualize mean antigenic effect of mutations at each RBD site. It's striking how peaks in this plot include so many sites of emerging mutations: E484, L452, K417, R346, etc. (5/n)
You can also zoom in on sites of interest to see which antibodies/sera are affected by mutations there. For instance, @Tuliodna recently reported a new lineage with a mutation at R346: mutations there impact several class 3 antibodies such as C135. (6/n)
You can also select specific antibodies to see their binding escape mutations. For instance, LY-CoV555 (bamlanivimab) is unfortunately affected by mutations at E484 and L452, which is why US government recently halted distribution of this therapeutic antibody. (7/n)
You can also visualize sera binding-escape mutations. For instance, below shows mutations that reduce binding by convalescent sera from @HelenChuMD's HAARVI cohort are most similar to ones (eg, E484K) that affect class 2 antibodies. (8/n)
I’ve updated SARSCoV2 antibody-escape calculator w new deep mutational scanning data of @yunlong_cao @jianfcpku
My interpretation: antigenic evolution currently constrained by pleiotropic effects of mutations on RBD-ACE2 affinity, RBD up-down position & antibody neutralization
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY To add to thread linked above, human British Columbia H5 case has a HA sequence (GISAID EPI_ISL_19548836) that is ambiguous at *both* site Q226 and site E190 (H3 numbering)
Both these sites play an important role in sialic acid binding specificity
@Nucleocapsoid @HNimanFC @mrmickme2 @0bFuSc8 @PeacockFlu @CVRHutchinson @SCOTTeHENSLEY If you are searching literature, these sites are E190 and Q226 in H3 numbering, E186 and Q222 in mature H5 numbering, and E202 and Q238 in sequential H5 numbering (see: )dms-vep.org/Flu_H5_America…
Here is analysis of HA mutations in H5 influenza case in Missouri resident without known contact w animals or raw milk.
TLDR: there is one HA mutation that strongly affects antigenicity, and another that merits some further study.
As background, CDC recently released partial sequence of A/Missouri/121/2024, which is virus from person in Missouri who was infected with H5 influenza.
Here I am analyzing HA protein from this release, GISAID accession EPI_ISL_19413343cdc.gov/bird-flu/spotl…
Sequence covers all of HA except signal peptide, and residues 325-351 (sequential numbering) / 312-335 (H3 numbering). The missing residues encompass HA1-HA2 boundary, and any missed mutations there unlikely to affect antigenicity or receptor binding, but could affect stability.
In new study led by @bblarsen1 in collab w @veeslerlab @VUMC_Vaccines we map functional & antigenic landscape of Nipah virus receptor binding protein (RBP)
Results elucidate constraints on RBP function & provide insight re protein’s evolutionary potentialbiorxiv.org/content/10.110…
Nipah is bat virus that sporadically infects humans w high (~70%) fatality rate. Has been limited human transmission
Like other paramyxoviruses, Nipah uses two proteins to enter cells: RBP binds receptor & then triggers fusion (F) protein by process that is not fully understood
RBP forms tetramer in which 4 constituent monomers (which are all identical in sequence) adopt 3 distinct conformations
RBP binds to two receptors, EFNB2 & EFNB3
RBP’s affinity for EFNB2 is very high (~0.1 nM, over an order of magnitude higher than SARSCoV2’s affinity for ACE2)