* Wochen-Altersgruppen-Daten bis KW 12 vom RKI eingepflegt
* R-Wert Reihe angepasst an aktuelle Entwicklung
* Impfung oder Infektion schützt nur zu 80% davor, sich anzustecken und dann andere anzustecken (Quelle CDC) (vorher 100%)
2/x
Änderungen am Modell: Teil 2:
* Deutlich ambitionierteren Impfplan habe ich von RKI Studie “Epidemiologisches Bulletin 13/2021” übernommen (siehe Bild)
* Darstellung der Infizierten plus Dunkelziffer bei Impfrate
* Berechnung der LongCovid-Fälle von UK-Studie übernommen. 3/x
Vergleich Fallzahlen pro Woche (Modellversionen vom 25.3. und vom 3.4.) 4/x
Vergleich Modellversionen vom 25.3. und vom 3.4. (Achtung: Vertikale Achsen sind unterschiedlich skaliert): 5/x
Bemerkenswert erscheint mir, dass sich das Durchschnittsalter der ITS Patienten vor Juni nicht grossartig ändert in meinen Modellberechnungen. Überprüfen kann ich das nicht, es gibt m.E. keine öffentlichen Daten dazu. 6/x
Die Berechnung der Anzahl der LongCovid Patienten erfolgt nach den Daten der Studie "Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK: 1 April 2021"... 7/x ons.gov.uk/peoplepopulati…
...die die folgende Angaben zur Wahrscheinlichkeit hat, dass ein Patient nach einem positiven Test noch Symptome hat. Diese Wahrscheinlichkeit liegt zwischen 12% und 21% (wobei hier Rate der Patienten gezeigt ist, die x Tage nach pos. Test noch mindestens ein Symptom haben) 8/x
Damit ergibt sich eine immense Anzahl an LongCovid-Fällen (wobei hier die Rate der Patienten gezeigt ist, die x Tage nach pos. test noch mindestens ein Symptom haben). 9/x
Abschließend hier der komplette Modelllauf für das Szenario, dass nichts einschneidendes passiert und die Schulen wieder aufmachen nach den Ferien: 10/x
**WENN** (Achtung, Konjunktiv) die aktuelle COVID Welle ähnlich verlaufen würde wie die letzte Welle, dann **könnte** das im Herbst so aussehen: Peak der Welle könnte Anfang Oktober zwischen Inzidenz 2500-5500 sein, dafür dieses Jahr ruhigerer Jahreswechsel.
Let me explain 🧵
Wenn man sich geglättete Wochen-R-Werte (=aktuelle Woche durch Mittelwert 2 Vorwochen) anschaut und mit Anzahl der "Ansteckbaren" (=Bevölkerung minus Infektionen der letzten 12 Wochen) anschaut, könnte es Zusammenhang geben: Bei ca. 55 Mio Ansteckbaren, sinkt der R-Wert unter 1.
Dann bleibt der R-Wert unter 1, die Welle läuft aus, bis wieder ca. 78 Mio Ansteckbare erreicht sind, dann geht der R-Wert wieder über 1 und die nächste Welle beginnt. Diese Augenblicke sind in der Grafik mit rosa Pfeilen markiert.
Ich habe hier mal versucht, das aktuelle Infektionsgeschehen in Deutschland (rechts) anhand der COVID-Hospitalsierungen (links) der @diedgina Notaufnahme Ampel **abzuschätzen**. Links sieht es so aus, als wären wir auf Vorjahresniveau. Aber...
Aber weil wir (optimistisch) davon ausgehen wollen, dass die Hospitalisierungsrate über die Zeit stetig sinkt (durch mehr und mehr Infektions/Impfbedingte Immunität), müßten wir jetzt aktuell im August 2024 deutlich über der Anzahl der täglichen Neu-Infektionen des Vorjahres liegen.
Das ist hier aber natürlich nur eine ABSCHÄTZUNG mit großer Unsicherheit ("Error bars"), die man auch wieder nur abschätzen kann und die ich mit den lila Linien eingezeichnet habe. Aber hier geht es ja auch um die Darstellung des Trends.
Kann man die tatsächlichen SARS CoV2 Infektionszahlen und die daraus folgenden Longcovid Patientenzahlen aus öffentlich verfügbaren Daten abschätzen? Eine Statistik-Fingerübung zum Zuschauen. #manycharts
Ein längerer 🧵
1.
Was folgt ist eine Abschätzung der Zahlen für die COVID-Infektionen und LongCovid-Patienten in Deutschland. Aufgrund der mauen Datenlage kann das hier nur ein Versuch einer Annäherung sein. Trotzdem sollten diese Zahlen zumindest eine brauchbare Abschätzung "nach unten" sein.
2.
Wir gehen von den vom RKI vermeldeten Fallzahlen der letzten Jahre aus. Irgendetwas ist ab März 2023 passiert, die offiziellen Fallzahlen könnten suggerieren, dass die Pandemie vorbei gewesen wäre, aber....
Im Vergleich zur Vorwoche liegt die Modellrechnung mit den neuen Daten aus dieser Woche etwas optimistischer, aber nicht erheblich verändert. Spitze der Welle im Modell in der KW des 6.3.2023.
Der Peak bei den COVID-Hospitalisierungen hat sich um eine Woche nach vorne verschoben auf die KW des 6.3.2023 mit dem Wert 9250. Auch der Peak der COVID ITS-Belegung hat sich um eine Woche nach vorne verschoben auf ca. 1220 in der KW des 20.3.2023.
Mit den neuen Krankenstands-Daten der @BKKDV zeigt sich, dass die Krankenstands-Berechnung des Modells für Januar den Wert korrekt vorhergesagt hat. Für Mitte März erwartet das Modell einen höheren Krankenstand als im Dezember.
Update Modellrechnung: Die Dunkelziffer-korrigierte Modell-Inzidenz liegt jetzt höher als letzte Woche und oberhalb der Skala. Erst Ende März ist Entspannung in Sicht im Modell, der Krankenstand strebt wohl neuem Rekord entgegen.
Es herrscht immernoch eine große Unsicherheit, was man an der großen Spanne der wöchentl. COVID-Hospitalisierungen und COVID-ITS-Bettenbelegung sieht, die je nach Szenario von sinkend bis Verdopplung geht.
Ab jetzt bis Ende März liegt im Modell die Dunkelziffer-korrigierte Inzidenz bei mehreren Tausend (im zentralen Szenario). Welcher genaue Wert das ist, ist eigentlich schon nicht mehr relevant (und nicht überprüfbar). Wohl aber m.E. höher als alles, was wir bis jetzt hatten.
Mit den neuesten Sequenzierungsdaten deutet sich im Modell weiterhin an, dass die XBB.1.5 Welle kleiner ausfällt als die Dezember-Welle. Die Ferien helfen beim Bremsen, die Faschingswoche ist bereits mit etwas erhöhter Ansteckung modelliert (interne Modell-Inzidenz max ~4000).
Wenn es nach dem Modell geht, dann würden die ITS-Betten mit COVID nicht mehr über 500-700 steigen.
Krankenstand liegt im Modell Ende Februar auf ähnlichem Level wie im Dezember 2022.
Im Modell wird XBB.1.5 ab Ende Februar dominant (=Mehrheit der Infektionen). Die gestrichelten Linien zeigen wie das Modell die Entwicklung der Sequenzierungsdaten (durchgezogene Linien) synthetisch nachzeichnet um daraus einen möglichen weiteren Verlauf zu berechnen.