Tivadar Danka Profile picture
Apr 13, 2021 9 tweets 3 min read Read on X
Convolution is not the easiest operation to understand: it involves functions, sums, and two moving parts.

However, there is an illuminating explanation — with probability theory!

There is a whole new aspect of convolution that you (probably) haven't seen before.

🧵 👇🏽
In machine learning, convolutions are most often applied for images, but to make our job easier, we shall take a step back and go to one dimension.

There, convolution is defined as below.
Now, let's forget about these formulas for a while, and talk about a simple probability distribution: we toss two 6-sided dices and study the resulting values.

To formalize the problem, let 𝑋 and 𝑌 be two random variables, describing the outcome of the first and second toss.
Just for fun, let's also assume that the dices are not fair, and they don't follow a uniform distribution.

The distributions might be completely different.

We only have a single condition: 𝑋 and 𝑌 are independent.
What is the distribution of the sum 𝑋 + 𝑌?

Let's see a simple example. What is the probability that the sum is 4?

That can happen in three ways:

𝑋 = 1 and 𝑌 = 3,
𝑋 = 2 and 𝑌 = 2,
𝑋 = 3 and 𝑌 = 1.
Since 𝑋 and 𝑌 are independent, the joint probability can be calculated by multiplying the individual probabilities together.

Moreover, the three possible ways are disjoint, so the probabilities can be summed up.
In the general case, the formula is the following.

(Don't worry about the index going from minus infinity to infinity. Except for a few terms, all others are zero, so they are eliminated.)

Is it getting familiar?
This is convolution.

We can immediately see this by denoting the individual distributions with 𝑓 and 𝑔.

The same explanation works when the random variables are continuous, or even multidimensional.

Only thing that is required is independence.
Even though images are not probability distributions, this viewpoint helps us make sense of the moving parts and the everyone-with-everyone sum.

If you would like to see an even simpler visualization, just think about this:

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 11
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Oct 9
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Oct 8
Graph theory will seriously enhance your engineering skills.

Here's why you must be familiar with graphs: Image
What do the internet, your brain, the entire list of people you’ve ever met, and the city you live in have in common?

These are all radically different concepts, but they share a common trait.

They are all networks that establish relationships between objects. Image
As distinct as these things seem to be, they share common properties.

For example, the meaning of “distance” is different for

• Social networks
• Physical networks
• Information networks

But in all cases, there is a sense in which some objects are “close” or “far”. Image
Read 14 tweets
Oct 7
One of the coolest ideas in mathematics is the estimation of a shape's area by throwing random points at it.

Don't believe this works? Check out the animation below, where I show the method on the unit circle. (Whose area equals to π.)

Here is what's behind the magic:
Let's make this method precise!

The first step is to enclose our shape S in a square.

You can imagine this as a rectangular dartboard. Image
Now, we select random points from the board and count how many hit the target.

Again, you can imagine this as closing your eyes, doing a 360° spin, then launching a dart.

(Suppose that you always hit the board. Yes, I know. But in math, reality doesn't limit imagination.) Image
Read 14 tweets
Oct 6
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 5
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(