In machine learning, the inner product (or dot product) of vectors is often used to measure similarity.
However, the formula is far from revealing. What does the sum of coordinate products have to do with similarity?
There is a very simple geometric explanation!
🧵 👇🏽
There are two key things to observe.
First, the inner product is linear in both variables. This property is called bilinearity.
Second, is that the inner product is zero if the vectors are orthogonal.
With these, given an 𝑦, we can decompose 𝑥 into two components: one is orthogonal, while the other is parallel to 𝑦.
So, because of the bilinearity, the inner product equals to the inner product of 𝑦 and the parallel component of 𝑥.
If we write 𝑦 as a scalar multiple of 𝑥, we can see that their inner product can be expressed in terms of the magnitude of 𝑦 and the scalar.
In addition, if we assume that 𝑥 and 𝑦 have unit magnitude, the inner product is even simpler: it describes the scaling factor between 𝑦 and the orthogonal projection of 𝑥 onto 𝑦.
Note that this factor is in [-1, 1]. (It is negative if the directions are opposite.)
There is more. Now comes the really interesting part!
Let's denote the angle between 𝑥 and 𝑦 by α. The scaling factor r equals the cosine of α!
(Recall that we assume that 𝑥 and 𝑦 have unit magnitude.)
If the vectors don't have unit magnitude, we can simply scale them.
The inner product of the scaled vectors is called cosine similarity.
This is probably how you know this quantity. Now you see why!
If you have liked this thread, consider following me and hitting a like/retweet on the first tweet of the thread!
I regularly post simple explanations of seemingly complicated concepts in machine learning, make sure you don't miss out on the next one!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Differentiation reveals much more than the slope of the tangent plane.
We like to think about it that way, but from a different angle, differentiation is the same as an approximation with a linear function. This allows us to greatly generalize the concept.
Let's see why!
By definition, the derivative of a function at the point 𝑎 is defined by the limit of the difference quotient, representing the rate of change.
In geometric terms, the differential quotient represents the slope of the line between two points of the function's graph.
"1. No income tax for women with at least two children for life."
This is an election hack, meant to buy votes for the upcoming 2026 election. Fidesz (Hungary's ruling party) is significantly down in the polls after it was leaked that a convicted p*d*ph*le accessory was given a presidential pardon.
Hell, they even let a child p*rn*gr*phy wholesaler with 96000 images on his computer walk away with ~$1500 fine. (Check en.wikipedia.org/wiki/G%C3%A1bo… if you don't believe me.)
Thus, the government is scraping to buy back the trust of families.
Even if it wasn't an empty promise, waiving the income tax is unrealistic for budgetary reasons. Hungary's economy is in the toilet.
"3. Housing incentives for young couples.
Offers a low interest loan for couples raising or committing to having one child or more."
This loan is another propaganda trick. In practice, this loan resulted in the biggest housing crisis of the country's history, because all it did was raise the price of every real estate by the amount of the loan, making real estate ownership virtually impossible for the young generation.