Science discoveries made by @NASAWebb are expected to revolutionize our understanding of the cosmos and our origins within the universe! Dive into what Webb could reveal about the cosmos: bit.ly/3wJ1r9U Credit: ESO/M. Kornmesser. #AAS238 (1/9)
Mission goals for Webb include: Search for the first galaxies that formed in early universe; study the evolution of galaxies; observe star formation; and measure physical and chemical properties and investigate the potential for life in planetary systems. #AAS238 (2/9)
Webb is equipped with specialized instruments that detect infrared wavelengths, the light just beyond the visible spectrum. Infrared radiation can penetrate dense molecular clouds, whose dust blocks most of the light detectable by Hubble. Credit: NASA/JPL-Caltech #AAS238 (3/9)
Webb will aim to help us piece together what may have happened when the universe began expanding 13.8 billion years ago. It is the first observatory that will be capable of observing the very earliest galaxies, and perhaps even some of the first exploding stars. #AAS238 (4/9)
Webb is designed to help us understand the diversity of galaxy composition and structure over space and time; how galaxies form, interact, and change; and how supermassive black holes and their host galaxies influence each other. Credit: NASA/JPL-Caltech. #AAS238 (5/9)
Webb’s infrared wavelengths can look into dusty stellar nurseries to study very young stars and how those dusty environments contribute to the formation, evolution, and diversity of stars and planetary systems: bit.ly/3wJ1r9U#AAS238 (6/9)
One of Webb’s most anticipated contributions will be the study of exoplanets—planets orbiting distant stars. It will determine which elements are there and what they indicate about the world, including its potential to support life. Credit: NASA/ESA/STScI #AAS238 (7/9)
Astronomers are eager to use Webb’s instruments to look the objects in our own solar system. Understanding the weather and atmospheres of planetary bodies could potentially unlock clues to the origins of Earth and life as we know it. Credit: NASA. #AAS238 (8/9)
The Space Telescope Science Institute (@stsci) offers a variety of experts working directly with the telescope and the mission who are prepared to communicate in an understandable, public-friendly manner. Connect with our news team: bit.ly/3ce0n61#AAS238 (9/9)
• • •
Missing some Tweet in this thread? You can try to
force a refresh
How does a young dust grain survive the rigors of space and find its destiny? You decide! Below, choose a path for the dust grain and discover the adventures and perils that await! Results for the next step tomorrow. #DestinyofDust
START: Your story begins with two stars orbiting each other. The more massive star is super-hot and nearing the end of its lifecycle. Strong winds from the stars collide and cool, and you find yourself surrounded by sibling grains of dust swirling.
The adventure begins! What do we want to do? You decide, vote now! #DestinyofDust
How did up to five stars create the Southern Ring Nebula? Let’s hit “rewind” and replay the interactions that might have created the scene! (1/9) 🧵
Stars 1 and 2 are the only stars we see in the sixth and final panel above—and in #NASAWebb’s images. The remaining “guests” are stars 3, 4, and 5. They are all much less massive, or far smaller and dimmer, than stars 1 and 2. (2/9)
We start with a wider field. Star 1, the most massive, is the fastest to age and responsible for creating the planetary nebula. Star 2 very slowly orbits star 1. All is relatively quiet. Star 5 orbits star 1 far more tightly. (3/9)
BREAKING NEWS: #NASAWebb ushers in a new era of exoplanet science with the first unequivocal detection of CARBON DIOXIDE in a planetary atmosphere outside our solar system. (1/5) 🧵
After years of preparation and anticipation, exoplanet researchers are ecstatic! The James Webb Space Telescope has captured an astonishingly detailed rainbow of near-infrared starlight filtered through the atmosphere of a hot gas giant 700 light-years away. (2/5)
The transmission spectrum of exoplanet WASP-39 b, based on a single set of measurements made using Webb’s Near-Infrared Spectrograph and analyzed by dozens of scientists, represents a hat trick of firsts ⬇️. (3/5)
#NASAWebb will soon reveal unprecedented and detailed views of the universe, with the upcoming release of its first full-color images and spectroscopic data! Below is the list of objects that Webb targeted for these first observations, which will be released on July 12. (1/8)
Carina Nebula: One of the largest and brightest nebulae in the sky, located approximately 7,600 light-years away in the southern constellation Carina. Nebulae are stellar nurseries where stars form. The Carina Nebula is home to many massive stars. (2/8)
WASP-96b (spectrum): A giant planet outside our solar system, composed mainly of gas. The planet, located nearly 1,150 light-years from Earth, orbits its star every 3.4 days. It has about half the mass of Jupiter, and its discovery was announced in 2014. (3/8)
Bright stars create unique patterns called diffraction spikes, which are produced as light bends around the sharp edges of a telescope. Most reflecting telescopes—including #NASAWebb—show spikes as light interacts with the primary mirror and struts that support the mirror. (1/5)
Light—which has wave-like properties—tends to radiate from a point outward. When light waves interact, they can either become more amplified or cancel each other out. These areas of amplification and cancellation form the light and dark spots in diffraction patterns. (2/5)
Primary mirrors in reflecting telescopes cause light waves to interact as they direct light to the secondary mirror. So, even if a telescope had no struts, it would still create a diffraction pattern. The shape of the mirror and any edges it has determine its pattern. (3/5)
#NASAWebb will revolutionize our understanding of the lifecycles of stars, starting at the very beginning. Protostars like HH 47 eject light-year-long jets even while accumulating the hydrogen needed to begin nuclear fusion and shine. (1/4)
Credit: NASA.
With its powerful infrared sensitivity and resolution, #NASAWebb is capable of peering into star-forming regions across our entire galaxy—like R136—where previous infrared telescopes were limited to dust clouds within our own galactic neighborhood. (2/4)
Credit: NASA/ESA.
Sunlike stars end their lives by gently ejecting their outer layers to form what’s known as a planetary nebula. #NASAWebb will look at NGC 6302 and nebulas like it to learn how chemical elements are recycled throughout our galaxy. (3/4)