Lots of great tips in this thread from @BettySLai. My own technique is to use the dictation function on my iPhone. I dictate while I’m walking my dog. Just talk and talk. It gives the writing a conversational sound. Most of it is garbage, but occasionally something good comes out
Like many of the commenters in the thread, my own biggest weakness is a tendency to censor myself, and to keep editing the same sentence over and over. But when I dictate, the sentences flow. I pick one small topic and talk to myself about it. It generates a lot of raw material.
Editing that raw material is easy. It’s what I love to do. It’s producing the first draft that kills me.
Specifically, my technique is to open up the notes app on my iPhone. Hit the little microphone button, and begin talking while I walk my dog Murray. I don’t worry that the whole thing is incoherent. I just let the words flow and edit them later.
But it does help to have a small topic to talk about. That keeps the self-conversation from wandering too far afield. Sometimes, however, I will surprise myself by thinking of something else, only tangentially related. That’s fine! This method helps me find what I want to say.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Steven Strogatz

Steven Strogatz Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @stevenstrogatz

26 May
I’m thrilled about this preprint w Martin Kassabov and Alex Townsend. We prove that a network of identical Kuramoto oscillators synchronizes —regardless of the details of its wiring diagram — if every oscillator is connected to at least 75% of the others. arxiv.org/abs/2105.11406
This puzzle has fascinated a lot of us in my little corner of nonlinear dynamics since 2012. What’s the smallest level of connectivity that guarantees that a homogeneous Kuramoto model (the simplest kind of oscillator system) will always fall into sync?
We still don’t know the answer. The magic level of connectivity was previously proven to lie between 68.38 and 78.89%, and conjectured to be exactly 75%. In this preprint we’ve now reduced the upper bound to 75%. But that’s still far away from the best known lower bound.
Read 6 tweets
10 May
Regarding the natural place to introduce e, my preference is to wait until calculus. Once you learn that the antiderivative of x^n is x^[n+1]/(n+1), it becomes fascinating to ask: what happens when n = -1? So define L(x) as the indefinite integral of 1/x and explore it.
Doing it this way, you discover something truly amazing and beautiful: L(x) behaves like a logarithm! For instance, it obeys L(ax)=L(a)+L(x), as you can show by taking d/dx of L(ax). Once you know L is a log function, the natural question is: what is its base? Answer: call it e
Then, once e is in hand, define e^x as the inverse function to L(x). After that, you discover further wonders: e^x is its own derivative! Or as my old HS calc book (by Lynch and Ostberg) put it, e^x is "indestructible" under differentiation.
Read 6 tweets
2 Mar
I’ve spent the morning reading this preprint: arxiv.org/abs/1805.11556. It has a story behind it. A finance person named @MarcosCarreira does math for pleasure, inspired by @CutTheKnotMath. While playing with a classic problem, he finds something weird in a famous paper about it.
It seems that Marcos discovered an error in that famous paper (by Gilbert and Mosteller) which nobody noticed until now. But I’m not an expert in probability, and it would be great if those of you who are would take a look at Marcos’s paper. It strikes as a neat piece of work.
Marcos uncovered the error by running numerical simulations and finding that his results didn’t quite match the predictions of the classic analysis. Puzzled, he redid the analysis very carefully himself, helped by Mathematica, and found a subtle mistake in the earlier work.
Read 6 tweets
28 Feb
I just received this new book, and at a glance, it looks terrific. Very creatively conceived, written, and illustrated. I came to that conclusion after reading two pages at random. Take a look at them below and see what you think: Image
The teacher in me likes the question in the cloudy enclosure, and the gentle way it’s approached after that. The playful drawings help too. The question itself is really deep, and you can see the author appreciates that. Image
And now that the right question has been asked, we can learn what geometry and topology are really about, and the key distinction between them. Again, all this is helped by precise yet lighthearted drawings and layout. Image
Read 4 tweets
28 Feb
Image
For those pointing out that the Fibonacci sequence originated in India, yes, I agree! I learned this from Manjul Bhargava, and discussed the matter in some tweets a few years ago:
Fibonacci was intimately familiar with Indian math, and “his” sequence was well known to Indian linguists and poets Image
Read 5 tweets
9 Feb
I'm teaching a course on asymptotics and perturbation methods, and thought it might be fun to share the lectures on @YouTube. Here's lecture 1, which introduces the idea of asymptotic expansions. (For more about the course, see the rest of this thread.)
Asymptotic methods and perturbation theory are clever techniques for finding approximate analytical solutions to complicated problems by exploiting the presence of a large or small parameter. This course is an introduction to such methods.
The prerequisites are a knowledge of calculus and differential equations at an undergraduate level. The course emphasizes concrete examples, intuition, and applications to science and engineering, rather than theorems, proofs, and rigor. The treatment is friendly yet careful.
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!

:(