One under-appreciated finding in the IPCC AR6 is a lot more certainty around future warming.
Previously IPCC only gave "likely" warming ranges (e.g. a 2 in 3 chance of falling in the range). New report gives "very likely" 9 in 10 ranges. Here is a rough like-to-like comparison:
The IPCC AR5 future warming projections were nominally based on the 90th percentile of CMIP5 models, but the assessed range of climate sensitivity was much wider than the range in CMIP5 models, so these were treated "likely" (66th percentile) ranges.
The AR6, on the other hand, bases its warming projections on a combination of observationally-constrained CMIP6 models and a simple energy balance model using the new transient climate response (TCR) and equilibrium climate sensitivity (ECS) values in the report.
Per the AR6 WG1 Chapter 4: "Because different approaches... produce consistent results, there is high confidence in this assessment. These ranges... generally correspond to AR5 ranges... but likelihood is increased to very likely ranges, in contrast to the likely ranges in AR5."
Here is what the published RCP AR5 warming projections look like compared to the SSP AR6 ones; note that the AR5 ranges are "likely" 66th percentile ranges and the AR6 ones are "very likely" 90th percentile ranges.
There were no "very likely" ranges published in the AR5 to allow a direct comparison of scenarios. However, if we scale the AR5 projections by the difference between "likely" and "very likely" climate sensitivity (ECS) ranges we can get a rough estimate:
As an aside, TCR would probably be better than ECS to use for scaling these, but as far as I can tell the AR5 did not provide a "very likely" TCR range.
This increased confidence in future warming projections was in part a result of a narrowing of the range of climate sensitivity in the AR6 through a combination of multiple lines of evidence, following the Sherwood et al review: agupubs.onlinelibrary.wiley.com/doi/full/10.10…
So why is this important? Narrowing the range of future warming represents both good and bad news: good news that some of the very high end warming outcomes now seems less likely, but bad that we much less likely to get lucky and end up with less warming than we expected.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Theres been a bit of confusion lately around how the climate system response to carbon dioxide removal. While there are complexities, under realistic assumptions a ton of removal is still equal and opposite in its effects to a ton of emissions.
A thread: 1/x
When we emit a ton of CO2 into the atmosphere, a bit more than half is reabsorbed by the ocean and the biosphere today (though this may change as a warming world weakens carbon sinks). Put simply, 2 tons of CO2 emissions -> 1 ton of atmospheric accumulation.
Carbon removal (CDR) is subject to the same effects; if I remove two tons of CO2 from the atmosphere, the net removal is only one ton due to carbon cycle responses. Otherwise removal would be twice as effective as mitigation, which is not the case.
The carbon cycle has been close to equilibrium through the Holocene; we know this because we measure atmospheric CO2 concentrations in ice cores. But in the past few centuries CO2 has increased by 50%, and is now at the highest level in millions of years due to human emissions.
Starting 250 years ago, we began putting lots of carbon that was buried underground for millions of years into the atmosphere. All in all we’ve emitted nearly 2 trillion tons of CO2 from fossil fuels, which is more than the total mass of the biosphere or all human structures:
About a trillion of that has accumulated in the atmosphere, increasing CO2 concentrations to levels last seen millions of years ago. The remainder was absorbed by the biosphere and oceans. We can measure these sinks, and it’s incontrovertible that they are indeed net carbon sinks
We just published our State of the Climate Q2 update over at @CarbonBrief:
⬆️ Now a ~95% chance 2024 will be the warmest year on record.
⬆️ 13 month streak of records set between June 2023 and June 2024.
⬆️ July 22nd 2024 was the warmest day on record (in absolute terms).
⬇️ July 2024 will very likely come in below July 2023, breaking the record streak.
⬇️ The rest of 2024 is likely to be cooler than 2023 as El Nino fades and La Nina potentially develops.
⬇️ Second lowest Antarctic sea ice on record.carbonbrief.org/state-of-the-c…
The past 13 months have each set a new record, with 2024 being quite a bit warmer than 2023 (at ~1.63C above preindustrial levels) in the ERA5 dataset:
However, the margin by which records are being set has shrunk; global temperatures were setting new records by a stunning 0.3C to 0.5C in the second half of 2023, but have been breaking the prior records (set in 2016, 2020, or 2023) by only 0.1C to 0.2C this year:
Global surface temperatures from @BerkeleyEarth are now out for June. It was the warmest June on record for land, oceans, and the globe as a whole by a sizable margin (~0.14C), and came in at 1.6C above preindustrial levels. berkeleyearth.org/june-2024-temp…
This was the 13th consecutive record setting month, and the 12th month in a row above 1.5C:
The exceptional nature of recent global temperatures really stands out when we look at a 12-month moving average:
Global temperatures were extremely hot in June 2024, at just over 1.5C, beating June 2023's previous record-setting temperatures by 0.14C and coming in around 0.4C warmer than 2016 (the last major El Nino event).
Now 2024 is very likely to beat 2023 as the warmest year on record
June 2024 was so warm that – in the absence of 2023's exceptional warmth – it would have beaten any past July as the warmest absolute monthly temperature experienced by the planet in the historical record:
This plot shows how June 2024 stacked up against all the prior Junes since 1940 in the ERA5 dataset:
We’ve long talked about the carbon budget, but given that the world is on track to pass the 1.5C target in the coming decade its time to start talking about the "carbon debt".
Carbon dioxide accumulates in the atmosphere where it lasts for an extremely long time. While about half of our emissions are removed by land and ocean carbon sinks over the first century, it takes on the order of 400,000 years for nature to fully remove a ton of CO2.
But it turns out that the warming from our CO2 emissions is also extremely long lived. Even if global CO2 emissions ceased and atmospheric CO2 concentrations began to decline, the warming from those emissions would remain for millennia: pnas.org/doi/full/10.10…