黒木玄 Gen Kuroki Profile picture
Sep 11, 2021 8 tweets 4 min read Read on X
#Julia言語

色々よく分かっていないあいだは、内部コンストラクタを定義しない方が無難だという話。

添付画像は

github.com/genkuroki/publ…

より。これの1つ前のコードでは赤枠部分の外部コンストラクタしか定義されていなかった。青枠部分は後で追加された。

続く
#Julia言語

struct Foo{T}
a::T
b::T
Foo(a::T) where T = new{T}(a, T(2)a)
end

と内部コンストラクタFoo(a)を定義すると、これ以外にFoo型のオブジェクトを作る方法が失われ、フィールドbは常にaの2倍になることになります。

この仕様を変更するにはコードの変更が必要になる。
#Julia言語 一方、

struct Bar{T}
a::T
b::T
end
Bar(a::T) where T = Bar{T}(a, T(2)a)

と内部コンストラクタを定義せずに、外部コンストラクタBar(a)を定義しているなら、デフォルトで定義されているBar(a, b)を使ってbをaの2倍以外の値に設定できます。
#Julia言語 添付画像のコードは最初赤枠部分の外部コンストラクタしか定義されてなかった。

赤枠のコンストラクタでは、ポテンシャル函数のみを与えたときに、そのgradientを自動微分を使って構成するようになっています。続く
#Julia言語 もしも赤枠のコンストラクタが内部コンストラクタになっていたとすると、struct ~ end 内にコードを追加せずに、ポテンシャル函数のgradientを別の方法で構成して利用することが不可能になってしまいます。

これが、内部コンストラクタを定義した場合の典型的なリスクです。
#Julia言語 青枠部分のコンストラクタは module My の内側で定義されている必要はありません。module My のコードを変更せずに自前で追加可能。

この追加は、gradientをSymbolics.jlを使った数式処理で構成するために必要でした。

その御利益はさらなる高速化!

#Julia言語 内部コンストラクタを定義することは、「この型の使用法として許されるのは俺が決めた使い方だけだ!」という主張をユーザーに押し付けるために役に立ちます。

ユーザー側が数学的な試行錯誤を自由にできるようにするためには、内部コンストラクタの定義は避けたほうがよいです。
#Julia言語

「この型の使用法として許されるのは俺が決めた使い方だけだ!」としたい理由があったり、自己参照オブジェクトが欲しい場合には内部コンストラクタを使わざるを得ない。

一方、ユーザーに試行錯誤のし易さを提供したいなら、内部コンストラクタの定義は避けた方が良さそうです。

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with 黒木玄 Gen Kuroki

黒木玄 Gen Kuroki Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @genkuroki

Aug 29
#統計 サイコロを1万回ふってどの目の確率も1/6に近付くかを調べることについて、

「大数の法則」
「標本調査がどーして成り立つか」
「1万回も投じる必要がない」

と基本的なことを理解していない疑いがある発言をしているところにみんなもっとつっこみを入れるべきだと思いました。
Image
#統計 以下のリンク先の反応も理解していない側に分類されると私は思いました。

確率の計算をある程度できれば「1万回もしなくていい」と安易に言えないはずです。

例えば、試行回数n=10000、成功確率p=1/6の二項分布において、0.99np以下となる確率と1.01np以上となる確率を計算してみて下さい。 Image
#統計 こういう話題の場合には、仮にどの目が出る確率もぴったり1/6ならば、1万回サイコロをふってとき1の目が出た回数がk回以下になる確率やk回以上になる確率がどうなるかを具体的に計算してみた方がよいです。

確率の数値に関する直観を身につけることは難しいので、地道に計算してみるべき。
Read 11 tweets
Jun 13
#統計 いつも言っていることをそのまま書きます。長めのスレッドになります。

以下スクショによるスライドの引用は より。赤字と青字は私による書き込みコメント。

まず、p.12について。詳しい解説に続く。 speakerdeck.com/shuntaros/jia-…

Image
#統計 「違いがない」の型の帰無仮説のP値をnull P値と呼びます。

null P値は「違いは○○である」の型の仮説に関する無数のP値の特別な場合で、null P値へのこだわりは悪しきnullismである云々とGreenlandさんは言っています。

biostat.ucdavis.edu/sites/g/files/…
Image
#統計 平たく言えば、「違いがない」の型の帰無仮説を「null P値<α」という条件によって棄却して「違いはある」という結論を出すためにP値を単純に使うことはP値の誤用の典型例であり、科学のプロセスを害しています。

biostat.ucdavis.edu/sites/g/files/…
Image
Read 36 tweets
Jun 18, 2023
#統計 念の為のコメント

1️⃣「t検定の使用が適切なためには、母集団が正規分布に従っていることが必要である」という考え方は誤り。

2️⃣「Wilcoxonの順位和検定=Mann-WhitneyのU検定であれば、無条件使用は適切である」という考え方も誤り。

以上の誤りを信じている人達をよく見る。続く
#統計

1️⃣「t検定の使用が適切なためには、母集団が正規分布に従っていることが必要である」という考え方は誤り。

これについてはツイッター上で繰り返し非常に詳しく解説して来ました。

ツイログ検索

twilog.togetter.com/genkuroki/sear…
#統計

2️⃣「Wilcoxonの順位和検定=Mann-WhitneyのU検定であれば、無条件使用は適切である」という考え方も誤り。

これについてもツイッター上で繰り返し非常に詳しく解説して来ました。

ツイログ検索

twilog.togetter.com/genkuroki/sear…
Read 40 tweets
Jun 17, 2023
#数楽 ℤ[√2]やℤ[√3]はEuclid整域なのでPIDでUFDになるので、ℤ[√2]やℤ[√3]係数の多項式の √2や√3が出て来る因数分解の問題も既約元の積に分解する問題として意味を持ちます。続く
#数楽 ただし、整数dに関する√dが出て来る場合には、既約元の積への分解は因子の可逆元倍と順序の違いを無視しても一意的でなくなる場合が出て来ます。

実はそういうところに面白い数学が隠れている!
#数楽 整数の平方根が出て来る因数分解もちょっと話題になっていますが、その話はとてつもなく面白い数学の話に繋がっています!

中学生であっても思いつきそうな話の中にも素晴らしい数学が隠れています!
Read 20 tweets
Jun 16, 2023
東工大出身者のような理系の人達が、上野千鶴子が自閉症の母親原因説を唱えるくらい科学的に無能でかつ優しさに欠けた人物であることぐらいは知っておいた方が、我々の社会はよくなる可能性が高まると思います。

有名かつ有力になってしまった人物はたとえク○であっても無視できなくなる。
上野千鶴子は、自閉症の原因について母子密着説を唱えていたのですが、それが誤りであることが定説になっていることを指摘された後には、定説と上野千鶴子的なトンデモ説を平等に扱うという態度を取りました。

上野千鶴子の自分が苦しめた人達への態度は真にあきれるものでした。
上野千鶴子的な活動家は科学的無知と優しさに欠けた態度の両方の力を行使していました。

そういうことを許す伝統が現代においても人々の苦しみの源泉の1つになっているわけです。
Read 6 tweets
Jun 15, 2023
私は、環論を学ぶまで、重根もしくは重解の概念を十分に理解できた感じがしてなかったです。(代数)方程式の概念も同様。

実数体上の方程式x²=0は環

A = ℝ[x]/(x²)

で表現されます。これと方程式x=0に対応する環

ℝ[x]/(x)

は異なる。環論を使えば方程式x²=0とx=0を明瞭に区別できます。
環k上の環Aで表現された方程式のk上の環Bでの解集合はk上の環準同型全体の集合

Hom_{k-ring}(A, B)

で表現されます。例えば、集合として、

Hom_{ℝ-ring}(ℝ[x,y]/(x²+y²-1), ℝ) ≅ {(x,y)∈ℝ²|x²+y²=1}.
そして、以上のような代数方程式の表現になっている環の話について前もって知っておいた方が、環論の勉強はしやすいように思えます。
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(