Tivadar Danka Profile picture
Sep 14, 2021 10 tweets 4 min read Read on X
You are (probably) wrong about probability.

If I toss a fair coin ten times and it all comes up heads, what is the chance that the 11th toss will also be heads? Many think that it'll be highly unlikely. However, this is incorrect.

Here is why!

↓ A thread. ↓
In probability theory and statistics, we often study events in the context of other events.

This is captured by conditional probabilities, answering a simple question: "what is the probability of A if we know that B has occurred?".
Without any additional information, the probability that eleven coin tosses result in eleven heads in a row is extremely small.

However, notice that it was not our case. The original question was to find the probability of the 11th toss, given the result of the previous ten.
In fact, none of the previous results influence the current toss.

I could have tossed the coin thousands of times and it all could have came up heads. None of that matters.

Coin tosses are 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of each other. So, we have 50% that the 11th toss is heads.
(If we don't know that heads and tails have equal probability, having 11 heads in a row might raise suspicions.

However, that is a topic for another day.)
Mathematically speaking, this is formalized by the concept of independence.

The events 𝐴 and 𝐵 are independent if observing 𝐵 doesn't change the probability of 𝐴.
However, people often perceive that the frequency of past events influences the future.

If I lose 100 hands of Blackjack in a row, it doesn't mean that I ought to be lucky soon. Hence, this phenomenon is called the Gambler's fallacy.

en.wikipedia.org/wiki/Gambler%2…
In fact, long runs of the same outcomes will happen if the sample size is large enough.

You can check that for yourself with Python.

Below, I simulated 1000 independent coin tosses and highlighted the parts with at least ten heads in a row.
We can actually use runs of matching outcomes to determine if a sequence is truly random.

This method is called the Wald–Wolfowitz runs test.

en.wikipedia.org/wiki/Wald%E2%8…
I frequently post threads like this, diving deep into concepts in machine learning and mathematics.

If you have enjoyed this, make sure to follow me and stay tuned for more!

The theory behind machine learning is beautiful, and I want to show this to you.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Feb 28
I am an evangelist for simple ideas.

No matter the field, you can (almost always) find a small set of mind-numbingly simple ideas making the entire thing work.

In machine learning, the maximum likelihood estimation is one of those. Image
I'll start with a simple example to illustrate a simple idea.

Pick up a coin and toss it a few times, recording each outcome. The question is, once more, simple: what's the probability of heads?

We can't just immediately assume p = 1/2, that is, a fair coin.
For instance, one side of our coin can be coated with lead, resulting in a bias. To find out, let's perform some statistics! (Rolling up my sleeves, throwing down my gloves.)
Read 28 tweets
Feb 26
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.

Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.

What is the law of large numbers, then? Image
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.

So, let’s stick with coin tossing. What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.

Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables. Image
Read 17 tweets
Feb 24
The expected value is one of the most important concepts in probability and statistics.

For instance, all the popular loss functions in machine learning, like cross-entropy, are expected values. However, its definition is far from intuitive.

Here is what's behind the scenes. Image
It's better to start with an example.

So, let's play a simple game! The rules: I’ll toss a coin, and if it comes up heads, you win $1. However, if it is tails, you lose $2.

Should you even play this game with me? We’ll find out.
After n rounds, your earnings can be calculated by the number of heads times $1 minus the number of tails times $2.

If we divide total earnings by n, we obtain your average earnings per round. Image
Read 16 tweets
Feb 21
You have probably seen the famous bell curve hundreds of times before.

It is often referred to as some sort of “probability”. Contary to popular belief, this is NOT a probability, but a probability density.

What are densities and why do we need them? Image
First, let's talk about probability.

The gist is, probability is a function P(A) that takes an event (that is, a set), and returns a real number between 0 and 1.

The event is a subset of the so-called sample space, a set often denoted with the capital Greek omega (Ω). Image
Every probability measure must satisfy three conditions: nonnegativity, additivity, and the probability of the entire sample space must be 1.

These are called the Kolmogorov axioms of probability, named after Andrey Kolmogorov, who first formalized them. Image
Read 21 tweets
Feb 19
The single biggest argument about statistics: is probability frequentist or Bayesian?

It's neither, and I'll explain why.

Buckle up. Deep-dive explanation incoming. Image
First, let's look at what is probability.

Probability quantitatively measures the likelihood of events, like rolling six with a dice. It's a number between zero and one. This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

The event space is also a set, usually denoted by Ω.) Image
Read 33 tweets
Feb 17
If it is raining, the sidewalk is wet.

If the sidewalk is wet, is it raining? Not necessarily. Yet, we are inclined to think so. This is a preposterously common logical fallacy called "affirming the consequent".

However, it is not totally wrong. Why? Enter the Bayes theorem. Image
Propositions of the form "if A, then B" are called implications.

They are written as "A → B", and they form the bulk of our scientific knowledge.

Say, "if X is a closed system, then the entropy of X cannot decrease" is the 2nd law of thermodynamics.
In the implication A → B, the proposition A is called "premise", while B is called the "conclusion".

The premise implies the conclusion, but not the other way around.

If you observe a wet sidewalk, it is not necessarily raining. Someone might have spilled a barrel of water.
Read 9 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(