If I toss a fair coin ten times and it all comes up heads, what is the chance that the 11th toss will also be heads? Many think that it'll be highly unlikely. However, this is incorrect.
Here is why!
↓ A thread. ↓
In probability theory and statistics, we often study events in the context of other events.
This is captured by conditional probabilities, answering a simple question: "what is the probability of A if we know that B has occurred?".
Without any additional information, the probability that eleven coin tosses result in eleven heads in a row is extremely small.
However, notice that it was not our case. The original question was to find the probability of the 11th toss, given the result of the previous ten.
In fact, none of the previous results influence the current toss.
I could have tossed the coin thousands of times and it all could have came up heads. None of that matters.
Coin tosses are 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of each other. So, we have 50% that the 11th toss is heads.
(If we don't know that heads and tails have equal probability, having 11 heads in a row might raise suspicions.
However, that is a topic for another day.)
Mathematically speaking, this is formalized by the concept of independence.
The events 𝐴 and 𝐵 are independent if observing 𝐵 doesn't change the probability of 𝐴.
However, people often perceive that the frequency of past events influences the future.
If I lose 100 hands of Blackjack in a row, it doesn't mean that I ought to be lucky soon. Hence, this phenomenon is called the Gambler's fallacy.
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.
Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.
What is the law of large numbers, then? Read on:
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.
So, let’s stick with coin tossing.
What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.
Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables.