Tivadar Danka Profile picture
Sep 14, 2021 10 tweets 4 min read Read on X
You are (probably) wrong about probability.

If I toss a fair coin ten times and it all comes up heads, what is the chance that the 11th toss will also be heads? Many think that it'll be highly unlikely. However, this is incorrect.

Here is why!

↓ A thread. ↓
In probability theory and statistics, we often study events in the context of other events.

This is captured by conditional probabilities, answering a simple question: "what is the probability of A if we know that B has occurred?".
Without any additional information, the probability that eleven coin tosses result in eleven heads in a row is extremely small.

However, notice that it was not our case. The original question was to find the probability of the 11th toss, given the result of the previous ten.
In fact, none of the previous results influence the current toss.

I could have tossed the coin thousands of times and it all could have came up heads. None of that matters.

Coin tosses are 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of each other. So, we have 50% that the 11th toss is heads.
(If we don't know that heads and tails have equal probability, having 11 heads in a row might raise suspicions.

However, that is a topic for another day.)
Mathematically speaking, this is formalized by the concept of independence.

The events 𝐴 and 𝐵 are independent if observing 𝐵 doesn't change the probability of 𝐴.
However, people often perceive that the frequency of past events influences the future.

If I lose 100 hands of Blackjack in a row, it doesn't mean that I ought to be lucky soon. Hence, this phenomenon is called the Gambler's fallacy.

en.wikipedia.org/wiki/Gambler%2…
In fact, long runs of the same outcomes will happen if the sample size is large enough.

You can check that for yourself with Python.

Below, I simulated 1000 independent coin tosses and highlighted the parts with at least ten heads in a row.
We can actually use runs of matching outcomes to determine if a sequence is truly random.

This method is called the Wald–Wolfowitz runs test.

en.wikipedia.org/wiki/Wald%E2%8…
I frequently post threads like this, diving deep into concepts in machine learning and mathematics.

If you have enjoyed this, make sure to follow me and stay tuned for more!

The theory behind machine learning is beautiful, and I want to show this to you.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 11
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Oct 9
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Oct 8
Graph theory will seriously enhance your engineering skills.

Here's why you must be familiar with graphs: Image
What do the internet, your brain, the entire list of people you’ve ever met, and the city you live in have in common?

These are all radically different concepts, but they share a common trait.

They are all networks that establish relationships between objects. Image
As distinct as these things seem to be, they share common properties.

For example, the meaning of “distance” is different for

• Social networks
• Physical networks
• Information networks

But in all cases, there is a sense in which some objects are “close” or “far”. Image
Read 14 tweets
Oct 7
One of the coolest ideas in mathematics is the estimation of a shape's area by throwing random points at it.

Don't believe this works? Check out the animation below, where I show the method on the unit circle. (Whose area equals to π.)

Here is what's behind the magic:
Let's make this method precise!

The first step is to enclose our shape S in a square.

You can imagine this as a rectangular dartboard. Image
Now, we select random points from the board and count how many hit the target.

Again, you can imagine this as closing your eyes, doing a 360° spin, then launching a dart.

(Suppose that you always hit the board. Yes, I know. But in math, reality doesn't limit imagination.) Image
Read 14 tweets
Oct 6
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 5
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(