Tivadar Danka Profile picture
Sep 14, 2021 10 tweets 4 min read Read on X
You are (probably) wrong about probability.

If I toss a fair coin ten times and it all comes up heads, what is the chance that the 11th toss will also be heads? Many think that it'll be highly unlikely. However, this is incorrect.

Here is why!

↓ A thread. ↓
In probability theory and statistics, we often study events in the context of other events.

This is captured by conditional probabilities, answering a simple question: "what is the probability of A if we know that B has occurred?".
Without any additional information, the probability that eleven coin tosses result in eleven heads in a row is extremely small.

However, notice that it was not our case. The original question was to find the probability of the 11th toss, given the result of the previous ten.
In fact, none of the previous results influence the current toss.

I could have tossed the coin thousands of times and it all could have came up heads. None of that matters.

Coin tosses are 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 of each other. So, we have 50% that the 11th toss is heads.
(If we don't know that heads and tails have equal probability, having 11 heads in a row might raise suspicions.

However, that is a topic for another day.)
Mathematically speaking, this is formalized by the concept of independence.

The events 𝐴 and 𝐵 are independent if observing 𝐵 doesn't change the probability of 𝐴.
However, people often perceive that the frequency of past events influences the future.

If I lose 100 hands of Blackjack in a row, it doesn't mean that I ought to be lucky soon. Hence, this phenomenon is called the Gambler's fallacy.

en.wikipedia.org/wiki/Gambler%2…
In fact, long runs of the same outcomes will happen if the sample size is large enough.

You can check that for yourself with Python.

Below, I simulated 1000 independent coin tosses and highlighted the parts with at least ten heads in a row.
We can actually use runs of matching outcomes to determine if a sequence is truly random.

This method is called the Wald–Wolfowitz runs test.

en.wikipedia.org/wiki/Wald%E2%8…
I frequently post threads like this, diving deep into concepts in machine learning and mathematics.

If you have enjoyed this, make sure to follow me and stay tuned for more!

The theory behind machine learning is beautiful, and I want to show this to you.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Dec 4, 2023
Understanding graph theory will seriously enhance your engineering skills; you must absolutely be familiar with them.

Here's a graph theory quickstart, in collaboration with Alejandro Piad Morffis.

Read on: Image
What do the internet, your brain, the entire list of people you’ve ever met, and the city you live in have in common?

These are all radically different concepts, but they share a common trait.

They are all networks that establish relationships between objects. Image
As distinct as these things seem to be, they share common properties.

For example, the meaning of “distance” is different for

• physical networks,
• information netorks,
• orf social networks,

but in all cases, there is a sense in which some objects are “close” or “far”. Image
Read 15 tweets
Sep 13, 2023
Neural networks are stunningly powerful.

This is old news: deep learning is state-of-the-art in many fields, like computer vision and natural language processing. (But not everywhere.)

Why are neural networks so effective? I'll explain. Image
First, let's formulate the classical supervised learning task!

Suppose that we have a dataset D, where xₖ is a data point and yₖ is the ground truth. Image
The task is simply to find a function g(x) for which

• g(xₖ) is approximately yₖ,
• and g(x) is computationally feasible.

To achieve this, we fix a parametrized family of functions. For instance, linear regression uses this function family: Image
Read 19 tweets
Sep 12, 2023
A question we never ask:

"How large that number in the Law of Large Numbers is?"

Sometimes, a thousand samples are large enough. Sometimes, even ten million samples fall short.

How do we know? I'll explain. Image
First things first: the law of large numbers (LLN).

Roughly speaking, it states that the averages of independent, identically distributed samples converge to the expected value, given that the number of samples grows to infinity.

We are going to dig deeper. Image
There are two kinds of LLN-s: weak and strong.

The weak law makes a probabilistic statement about the sample averages: it implies that the probability of "the sample average falling farther from the expected value than ε" goes to zero for any ε.

Let's unpack this. Image
Read 15 tweets
Aug 24, 2023
With the power of mathematical induction, I'll prove that everyone has the same eye color.

Don't believe me? Read on.

(And see if you can spot the sleight of hand.) Image
To formalize the problem, define the proposition Aₙ by

Aₙ = "in a set of n people, everyone has the same eye color".

If n equals the human population of planet Earth, we get the original statement. We'll prove that Aₙ is true via induction. Image
Proof by induction works like climbing an infinite staircase.

First, we'll show A₁. Then, we'll show that if Aₙ is true, then Aₙ₊₁ is true as well.

This way, Aₙ is true for any positive integer via the chain of implications

A₁ → A₂ → ... → Aₙ. Image
Read 13 tweets
Aug 21, 2023
The single biggest argument about statistics: is probability frequentist or Bayesian? It's neither, and I'll explain why.

Buckle up. Deep-dive explanation incoming. Image
First, let's look at what is probability.

Probability quantitatively measures the likelihood of events, like rolling six with a dice. It's a number between zero and one. This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

(The event space is also a set, usually denoted by Ω.) Image
Read 34 tweets
Aug 8, 2023
The Japanese multiplication method makes everybody feel "I wish they taught math like this in school."

It's not just a cute visual tool: it illuminates how and why long multiplication works.

Here is the full story. Image
First, the Japanese multiplication method.

The first operand (21 in our case) is represented by two groups of lines: two lines in the first (1st digit), and one in the second (2nd digit).

One group for each digit.
Similarly, the second operand (32) is encoded with two groups of lines, one for each digit.

These lines are perpendicular to the previous ones.
Read 11 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(