Tivadar Danka Profile picture
Sep 20, 2021 14 tweets 4 min read Read on X
What do you get when you let a monkey randomly smash the buttons on a typewriter?

Hamlet from Shakespeare, of course. And Romeo and Juliet. And every other finite string that is possible.

Don't believe me? Keep reading. ↓
Let's start at the very beginning!

Suppose that I have a coin that, when tossed, has a 1/2 probability of coming up heads and a 1/2 probability of coming up tails.

If I start tossing the coin and tracking the result, what is the probability of 𝑛𝑒𝑣𝑒𝑟 having heads?
To answer this, first, we calculate the probability of no heads in 𝑛 tosses. (That is, the probability of 𝑛 tails.)

Since tosses are independent of each other, we can just multiply the probabilities for each toss together.
By letting 𝑛 to infinity, we obtain that the probability of never tossing heads is zero.

That is, we are going to have heads come up eventually with probability 1.
Instead of coin tosses, we can talk about arbitrary events.

If an event has a nonzero probability and you have infinite attempts, 𝑖𝑡 𝑤𝑖𝑙𝑙 ℎ𝑎𝑝𝑝𝑒𝑛 with probability 1.
Now, let's apply that to our monkey, infinitely typing away at the typewriter.

What is the probability that six random consecutive keystrokes result in the string "Hamlet"?

First, each keystroke matching the right character is 1/(number of keys).
Because the keystrokes are independent, the probability of a given string is the product of the probabilities for each keystroke matching the individual character.
Now, let's calculate the probability that the entire Hamlet play by Shakespeare is typed randomly.

Since the entire play has 194270 characters, and there are 100 possible keys to hit, this probability is extremely small.

Still, it is larger than zero.
Thus, if our monkey keeps typing infinitely, the entire Hamlet play will appear somewhere. (Along with every other finite string you can imagine.)

However, this takes a 𝑣𝑒𝑟𝑦 long time on average.
If the probability of a given string occurring is 𝑝, the expected number of attempts to randomly generate it is 1/𝑝.

So, if 𝑝 is as small as randomly typing the entire Hamlet play, then 1/𝑝 is going to be astronomical.
(If you are not familiar with the concept of expected values, take a look at the simple explanation I posted a while ago.)

It states that given infinite time, a monkey randomly smashing the keys of a typewriter will type any given text.

Next time when you say, "even a monkey can do it", be careful. Monkeys can do a lot.
Recently, I have been thinking about probability a lot.

In fact, I am writing the probability theory chapters of my book, Mathematics of Machine Learning. The early access is just out, where I publish one chapter every week.

tivadar.gumroad.com/l/mathematics-…
I post several threads like this every week, diving deep into concepts in machine learning and mathematics.

If you have enjoyed this, make sure to follow me and stay tuned for more!

The theory behind machine learning is beautiful, and I want to show this to you.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Nov 23
The single biggest argument about statistics: is probability frequentist or Bayesian?

It's neither, and I'll explain why.

Buckle up. Deep-dive explanation incoming. Image
First, let's look at what is probability.

Probability quantitatively measures the likelihood of events, like rolling six with a dice. It's a number between zero and one. This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

The event space is also a set, usually denoted by Ω.) Image
Read 33 tweets
Nov 19
The single most undervalued fact of linear algebra: matrices are graphs, and graphs are matrices.

Encoding matrices as graphs is a cheat code, making complex behavior simple to study.

Let me show you how! Image
If you looked at the example above, you probably figured out the rule.

Each row is a node, and each element represents a directed and weighted edge. Edges of zero elements are omitted.

The element in the 𝑖-th row and 𝑗-th column corresponds to an edge going from 𝑖 to 𝑗.
To unwrap the definition a bit, let's check the first row, which corresponds to the edges outgoing from the first node. Image
Read 18 tweets
Oct 25
The following multiplication method makes everybody wish they had been taught math like this in school.

It's not just a cute visual tool: it illuminates how and why long multiplication works.

Here is the full story: Image
First, the method.

The first operand (21 in our case) is represented by two groups of lines: two lines in the first (1st digit), and one in the second (2nd digit).

One group for each digit.
Similarly, the second operand (32) is encoded with two groups of lines, one for each digit.

These lines are perpendicular to the previous ones.
Read 10 tweets
Oct 21
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 20
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Oct 19
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.

Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.

What is the law of large numbers, then? Read on: Image
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.

So, let’s stick with coin tossing.

What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.

Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables. Image
Read 17 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(