Dirk Paessler Profile picture
Nov 8, 2021 11 tweets 6 min read Read on X
Mein Thread mit den Modellrechnungen für die nächsten 6 Wochen hat eine Menge Aufmerksamkeit bekommen.

Zur Validierung meiner Ergebnisse hier ein Peer-Data Thread, der zeigt, dass Andere mit ganz anderen Methoden ganz ähnliche Werte erzeugen.
1/x Image
Die Grafik zeigt, dass es bei den nachfolgenden Modellen eine hohes Maß an Übereinstimmung gibt für eine ITS-Belegung über 6.000 Anfang Dezember. Der grüne Balken geht von einem Bremsen bei 400 aus, der gelbe Balken ist der Wert für 1 Woche vorher.
2/x
@ECMOKaragianni1, Wissenschaftlicher Leiter #DIVI Intensivregister, rechnet Anfang Januar mit 6.000 ITS-Patienten, wenn Inzidenz bei 400 stoppt (?). Das entspricht meinem Szenario H ("Ein Wunder geschieht") und ich komme auf 9.000 Betten, Peak an Xmas.
3/x
Das Team von @ViolaPriesemann wird hier von @quarkswdr zitiert mit einem Modell, das zum Jahresende 3.500 ITS Betten benötigt, wenn keine Maßnahmen kommen. Dieses Modell ist aber schon etwas älter.
4/x
@Martin46er1 zeigt in seinem Modell für Anfang Dezember eine ITS-Belegung von 9.000.
5/x
@aloa5 zeigt hier für den 23.11. etwa 5.000 ITS Betten. Alle meine Szenarien liegen am 22.11. bei 5.200 (schon nicht mehr vermeidbar).
6/x
@aloa5 zeigt hier für den 23.11. ca. 12.000 Hospitalisierungen pro Woche. Alle meine Szenarien liegen für die Woche des 15.11.-21.11. bei ca. 16.000 Hospitalisierungen, also auch etwas drüber.
7/x
@aurelwuensch zeigt für den 2.12. über 6.000 ITS Patienten. Nur "ein Wunder geschieht" liegt bei mir so tief zu dem Zeitpunkt.
8/x
@rv_enigma zeigt hier eine Interpolation, die auf 7.000 ITS Betten Anfang Dezember kommt. Alle meine Szenarien liegen da nur marginal drüber, außer "das Wunder".
9/x
Zum Schluss noch eine Validierung der Angabe der Toten, wenn Virus ungebremst durchläuft: 200.000-250.000 bei mir.
@mspro kommt auf 170.000 und @HInerle auf 320.000 .
10/x
Alle o.g. Abweichungen liegen innerhalb dessen, was an Unsicherheit für eine Vorhersage über 3 Wochen oder mehr zu erwarten wäre. Wichtig ist aber, dass der Trend in allen Modellen deutlich nach oben zeigt.
11/x

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Dirk Paessler

Dirk Paessler Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @dpaessler

Sep 1, 2024
**WENN** (Achtung, Konjunktiv) die aktuelle COVID Welle ähnlich verlaufen würde wie die letzte Welle, dann **könnte** das im Herbst so aussehen: Peak der Welle könnte Anfang Oktober zwischen Inzidenz 2500-5500 sein, dafür dieses Jahr ruhigerer Jahreswechsel.

Let me explain 🧵 Image
Wenn man sich geglättete Wochen-R-Werte (=aktuelle Woche durch Mittelwert 2 Vorwochen) anschaut und mit Anzahl der "Ansteckbaren" (=Bevölkerung minus Infektionen der letzten 12 Wochen) anschaut, könnte es Zusammenhang geben: Bei ca. 55 Mio Ansteckbaren, sinkt der R-Wert unter 1. Image
Dann bleibt der R-Wert unter 1, die Welle läuft aus, bis wieder ca. 78 Mio Ansteckbare erreicht sind, dann geht der R-Wert wieder über 1 und die nächste Welle beginnt. Diese Augenblicke sind in der Grafik mit rosa Pfeilen markiert.
Read 15 tweets
Aug 30, 2024
Ich habe hier mal versucht, das aktuelle Infektionsgeschehen in Deutschland (rechts) anhand der COVID-Hospitalsierungen (links) der @diedgina Notaufnahme Ampel **abzuschätzen**. Links sieht es so aus, als wären wir auf Vorjahresniveau. Aber... Image
Aber weil wir (optimistisch) davon ausgehen wollen, dass die Hospitalisierungsrate über die Zeit stetig sinkt (durch mehr und mehr Infektions/Impfbedingte Immunität), müßten wir jetzt aktuell im August 2024 deutlich über der Anzahl der täglichen Neu-Infektionen des Vorjahres liegen.
Das ist hier aber natürlich nur eine ABSCHÄTZUNG mit großer Unsicherheit ("Error bars"), die man auch wieder nur abschätzen kann und die ich mit den lila Linien eingezeichnet habe. Aber hier geht es ja auch um die Darstellung des Trends.
Read 10 tweets
Jul 28, 2024
Kann man die tatsächlichen SARS CoV2 Infektionszahlen und die daraus folgenden Longcovid Patientenzahlen aus öffentlich verfügbaren Daten abschätzen? Eine Statistik-Fingerübung zum Zuschauen. #manycharts

Ein längerer 🧵

1. Image
Was folgt ist eine Abschätzung der Zahlen für die COVID-Infektionen und LongCovid-Patienten in Deutschland. Aufgrund der mauen Datenlage kann das hier nur ein Versuch einer Annäherung sein. Trotzdem sollten diese Zahlen zumindest eine brauchbare Abschätzung "nach unten" sein.

2.
Wir gehen von den vom RKI vermeldeten Fallzahlen der letzten Jahre aus. Irgendetwas ist ab März 2023 passiert, die offiziellen Fallzahlen könnten suggerieren, dass die Pandemie vorbei gewesen wäre, aber....

3. Image
Read 36 tweets
Feb 23, 2023
Im Vergleich zur Vorwoche liegt die Modellrechnung mit den neuen Daten aus dieser Woche etwas optimistischer, aber nicht erheblich verändert. Spitze der Welle im Modell in der KW des 6.3.2023.
Der Peak bei den COVID-Hospitalisierungen hat sich um eine Woche nach vorne verschoben auf die KW des 6.3.2023 mit dem Wert 9250. Auch der Peak der COVID ITS-Belegung hat sich um eine Woche nach vorne verschoben auf ca. 1220 in der KW des 20.3.2023.
Mit den neuen Krankenstands-Daten der @BKKDV zeigt sich, dass die Krankenstands-Berechnung des Modells für Januar den Wert korrekt vorhergesagt hat. Für Mitte März erwartet das Modell einen höheren Krankenstand als im Dezember.
Read 7 tweets
Feb 17, 2023
Update Modellrechnung: Die Dunkelziffer-korrigierte Modell-Inzidenz liegt jetzt höher als letzte Woche und oberhalb der Skala. Erst Ende März ist Entspannung in Sicht im Modell, der Krankenstand strebt wohl neuem Rekord entgegen.
Es herrscht immernoch eine große Unsicherheit, was man an der großen Spanne der wöchentl. COVID-Hospitalisierungen und COVID-ITS-Bettenbelegung sieht, die je nach Szenario von sinkend bis Verdopplung geht.
Ab jetzt bis Ende März liegt im Modell die Dunkelziffer-korrigierte Inzidenz bei mehreren Tausend (im zentralen Szenario). Welcher genaue Wert das ist, ist eigentlich schon nicht mehr relevant (und nicht überprüfbar). Wohl aber m.E. höher als alles, was wir bis jetzt hatten.
Read 4 tweets
Feb 5, 2023
Mit den neuesten Sequenzierungsdaten deutet sich im Modell weiterhin an, dass die XBB.1.5 Welle kleiner ausfällt als die Dezember-Welle. Die Ferien helfen beim Bremsen, die Faschingswoche ist bereits mit etwas erhöhter Ansteckung modelliert (interne Modell-Inzidenz max ~4000).
Wenn es nach dem Modell geht, dann würden die ITS-Betten mit COVID nicht mehr über 500-700 steigen.
Krankenstand liegt im Modell Ende Februar auf ähnlichem Level wie im Dezember 2022.
Im Modell wird XBB.1.5 ab Ende Februar dominant (=Mehrheit der Infektionen). Die gestrichelten Linien zeigen wie das Modell die Entwicklung der Sequenzierungsdaten (durchgezogene Linien) synthetisch nachzeichnet um daraus einen möglichen weiteren Verlauf zu berechnen.
Read 4 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(