We now plot excess vs vaxx rate by country, age, sex.
Finally: the correct answer was
A ✅
B ❌
C ❌
I cannot see any correlation.
Closer look on the 20-24 year old boys. I can't see any correlation.
We should normalize by the population size to get a relative excess which is not distorted by the country bin size, but that shouldn't change a lot.
Find here the dashboard with the joint dataset (after joining 3 sets: vaxx rate, mort. 2020, mort. 2021). public.tableau.com/authoring/Mort…
Next time: same game for the elderly age bins. At some point, this magic, so important serum should give a pos. signal or not?😅
This may help to understand what I plotted. It’s basically the difference over a time window of @OS51388957 cumulative graphs. His graphs are a bit older, so they stop at week 30. But it nevertheless helps to understand I hope.
1/ Deutschland, die Energienarren der Welt: Thread.
Hier ist die Preiskurve (31 Tage, stündlich). Kaufe teuer, verkaufe billig. Bottom Nailers (oder auch Narren). Angeblich importieren sie, weil es billiger ist? Nein. Die Sonne scheint eben nicht nachts.
2/ Quelle: Agora Energiewende – de facto der Familienbetrieb der Grünen. Man sieht sofort, was los ist: Deutschland, auf einem Irrweg, in bestem Stil echter Narren. Verkaufen billig, kaufen teuer, alles im Namen der „Rettung“. Klar, wer nachts Sonne braucht, zahlt eben drauf.
3/ Jetzt wierholen wir zusammen, wie echte Hofnarren:
„Importieren ist billiger“
„Schweden hat versagt“
„Lauterbach rettet Leben“
@roberthabeck for Chancellor. Ab hier anders.
1/ The use of the BI (bigness index) to classify rural/urban areas is flawed. Landsat-derived GHSL BU (Global Human Settlement Layer Built-Up) data shows the rural curve (in green 🟩) consistently trailing the urbanized GHSL BU data (10% BU = typically for small towns 🟧).
3/ Analyzing further: nearly half of the stations are classified as rural (BI=0). This is complete nonsense, as the GHSL built-up percentages 2020 for these stations clearly indicate. Nearly all are, in fact, urban—which explains why they see no difference to officially urban.
3/ Now let's try GOTHENBURG. Hold on a second... what's happening? It looks like we've accidently landed in the US Midwest—in the middle of nowhere, where hockey sticks don't flourish. Nice flatliner we have here, just like CHAMA.
They're trolling / insulting. The request was clear: compare ERA5 2km / @meteoblue with @AEMET_CValencia sensor at an hourly level. If they match at night, cloudy days, winter, but the sensor shows higher T in summer clear skies / no wind / day 👉 sensor is heat-biased. So? Go.
Thanks, @meteoblue. Normal conversation can be so easy. If the Spanish gentlemen would now provide access to their hourly station dataset, we can overlay it with the fine-grid ERA5 2km hourly product and see what's going on. Does that sound like a way forward @AEMET_CValencia ?
@meteoblue @AEMET_CValencia He clearly doesn’t understand their response nor my request. At this stage, I just want him to provide THE HOURLY DATA. What the answer actually means is that the 30 km cell is more representative of the region’s climate—yes, it’s better than the station. Well done @ChGefaell 👍.
1/ Such places have no credibility for accurate bias free measurements. It's the opposite of a stable environment and per default a diesel powered urban expedition place. We see how the melting starts around the airport and the town.
2/ Here we see another example (Alaska). Russian high-lat regions are among the worst. It's a deception to take measurements from such places and claim that you've done 'science' while actually just picking up dirt. Why not Everest dirt basecamp next?
3/ It escalated quickly. Similar to @BMcNoldy from Miami, master's student @Daaanvdb also used airport data instead of professional equipment, like what's available at @UNISvalbard.
Let's do better and use proper data from a better looking station.
1/ As mentioned, Europe is too urbanized for climate measurements. Shown below is just the UHI effect. As mentioned, ANY type of urban landscape altering increases surface temperatures as well. The Netherlands and Benelux regions are all fully biased and unfit for climate science
2/ As mentioned previously, North Sweden is the most credible place for climate measurements due to its development, peace, and ability to capture high-quality data. Besides Sweden, only the US provides reliable historic data. All other regions are not credible and biased today.
3/ Source: YCEO Surface Urban Heat Islands: Spatially-Averaged Daytime and Nighttime Intensity for Annual, Summer, and Winter.
It's from 2003. Now it's even more urbanized = worse.