We now plot excess vs vaxx rate by country, age, sex.
Finally: the correct answer was
A ✅
B ❌
C ❌
I cannot see any correlation.
Closer look on the 20-24 year old boys. I can't see any correlation.
We should normalize by the population size to get a relative excess which is not distorted by the country bin size, but that shouldn't change a lot.
Find here the dashboard with the joint dataset (after joining 3 sets: vaxx rate, mort. 2020, mort. 2021). public.tableau.com/authoring/Mort…
Next time: same game for the elderly age bins. At some point, this magic, so important serum should give a pos. signal or not?😅
This may help to understand what I plotted. It’s basically the difference over a time window of @OS51388957 cumulative graphs. His graphs are a bit older, so they stop at week 30. But it nevertheless helps to understand I hope.
UAH is a model inference, not a measurement. It can’t be tested, yet many treat it like real raw. Calling that a ‘measurement’ is wrong. Neither Lindzen nor us take it seriously. It starts in a cold period, with no long-term data — adjusted, multi mission stitched SW composite.🚮
UAH is not measurement — it’s model-driven inference. Satellites detect radiance, not temperature. The ‘trend’ is built through weighting functions, drift corrections, and stitched instruments. It’s untestable, synthetic, and not suitable for long-term climate baselines.
It’s astonishing how confidently some treat satellite-based inferences as god in heaven like truth. These are SW model outputs, not reliable measurements. Treating them as accurate fact is scientifically indefensible. If you do so, expect your credibility to be challenged.
London is glowing today. Wide urban heat plume. Not “climate change.” Just real estate and concrete. The effect is visible. Quantifiable. Known. This should be a good study day to quantify UHI in more detail once the IR satellite pictures come in.
2/ We start low tech. Actually nothing more is needed. There is over 6°C urban heat. It's embarrassing to pretend today's 33°C are comparable to 100 years ago. Subtract 6–8°C for UHI and you get... 25–27°C. Welcome back to reality.
3/ Nighttime, Tmin. Watch how they flatten the colors. You’re not supposed to notice the 7°C UHI. We unflatten the colors. Look again: you see it now?
We can also do from SE raw. And we can also show how rural stations look. Frederik does like them. Climate agenda is measured in downtowns of the capitals?
Not sure if it’s normal that amateurs now have to lecture academics…?
The downtown station logs hourly=no need for even Ekholm, no need for re-sampling. Does Frederik even know what we mean? Nothing is adjusted. Also PHA leaves it as is as it only detects breakpoints (not UHI).
Yes. Hausfather & Berkeley Earth are pushing it.
But it’s not a measurement. Not one station shows that.
It’s what you get when you aggregate rot over time.
On the left: 8 pristine USCRN sites. Same y-scale.
Now look what they did.👇
2/ Was wir hier sehen: Die Datenreihe ist ein Komposit (sehr beliebt, wenig seroes, in der Klima-„Wissenschaft“).
Die Messmethode (und mehr) hat sich verändert – von analogen zu digitalen Sensoren. Die Entropie der Nachkommastellen zeigt das – deutlich.
1/ The result is simply wrong.
There are 2 stations there — we can compare.
🟥Red: Carlwood
🟩Green: Gatewick
We clearly see the overshoot.
Moreover: They’re using subhourly spikes (error) from a single, low-inertia sensor.
Total incompetence.
2/ Using TMAX from a low-quality single urban sensor is already peak incompetence.
But they go further — they take the spikes.
Even top-tier stations like USCRN show 2–3°C error at peak forcing.
USCRN uses triple sensors — worst spikes get voted out.
3/ The UK has nothing like the USCRN triple-sensor setup.
So when two nearby stations disagree, the right move is simple:
Discard the implausible one — in this case, Charlwood.
What does the agenda-captured @metoffice do?
They run with the error.
They hoax the public.
ISO9001🤡