1/9 Something seemed familiar about the Q498R mutation. Then I remembered: @_b_meyer, examining in-vitro evolution of RBD mutations, predicted this mutation could emerge & lead to a variant with higher infectivity & immune evasion than any existing ones. nature.com/articles/s4156…
2/9 Q498R was not just one of many mutations they predicted: it was far & away their top candidate to become a major RBD mutation. It's the only novel mutation they mention in the abstract, noting that it requires the N501Y mutation to confer increased ACE2 binding affinity.
3/9 They used yeast to display human ACE2 receptors, then let various versions of SARS-CoV-2 S RBD compete against one another, with the highest binding-affinity RBDs advancing to the next round.
4/9 Random mutations were introduced in ways I'm not competent to explain, so I've included the relevant description in the screenshot below.
5/9 Mutations common in known VOCs quickly emerged, especially E484K and N501Y, which quickly became dominant. To me, this seems a good indication that their methods are valid & useful.
6/9 For library B5, they used ACE2 that required extremely high binding affinity, & this "resulted in the fixation of mutations E484K, Q498R and N501Y in all sequenced clones." Q498R was present in all the RBD variants with the highest binding affinity.
7/9 Figure 2f shows binding affinity on the x-axis and makes clear the ability of Q498R to increase ACE 2 binding affinity, hence their prediction that this mutation could emerge & spread.
8/9 Perhaps even more worrying, computer modeling by this team indicates that Q498R could confer a significant amount of immune evasion on any variant possessing it. No wonder this new SA variant is the first to worry @GuptaR_lab since the emergence of Delta.
9/9 I'm not an expert, so if I've made any errors or mischaracterized anything above, I welcome corrections from real experts. Besides @_b_meyer, the only other authors on the study on Twitter I could find were @Matthew_Gagne_ and @Nadav_Elad.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
A fascinating SARS-CoV-2 sequence was recently uploaded—collected from a dog in Kazakhstan in July 2022.
Usher places the seq 1 nuc mut from the Wuhan ref seq—C21846T/S:T95I—i.e. pre-D614G. Could this seq somehow have a close connection to the first days of the pandemic?
1/19
Of the sequences near this one on the tree, all are low-quality & clearly bad BA.1 or Delta sequences. The only genuine one is from the UK, collected April 2020. So it's likely even S:T95I was not inherited.
This sequence has several fascinating aspects. 2/
(This all assumes the sequence is accurate and that C241T & C14408T (ORF1b:P314L) are genuinely absent. Its mutational characteristics make me certain this is a good sequence, though it's not impossible there's dropout not indicated hiding C241T and/or C14408T.) 3/
Do you remember BA.3—the weakling cousin of BA.1 & BA.2 that seemed to take the worst from each & had weaker ACE2 binding than even the ancestral Wuhan Virus?
After 3 years, BA.3 is back.
And it is transmitting.
Who saw this coming?
1/13
While the full extent of the new BA.3’s spread is not known, it’s been detected in 2 different South African regions through regular (not targeted) surveillance by @Dikeled61970012, @Tuliodna, & the invaluable South African virology community.
2/13 github.com/cov-lineages/p…
After nearly 3 years of intrahost evolution in a chronically infected person, the new BA.3 is almost unrecognizable. It has ~41 spike AA substitutions (4 of which are 2-nuc muts) to go with 14 AA deletions (∆136-147+∆243-244). We’ve seen nothing like this since 2023.
3/13
Fantastic review on chronic SARS-CoV-2 infections by virological superstars Richard Neher & Alex Sigal in Nature Microbiology. I’ll do a short overview, outline a couple minor quibbles, & defend the honor of ORF9b w/some stats & 3 striking sequences from the past week.
1/64
First, let me say that this is well-written, extremely readable, and accessible to non-experts, so you should go read the full paper yourself, if you can find a way to access it. (Just realized it’s paywalled, ugh.) 2/64nature.com/articles/s4157…
Neher & Sigal focus on the 2 most important aspects of SARS-CoV-2 persistence: its relationship to Long Covid (including increased risk of adverse health events) & its vital importance to the evolution of SARS-CoV-2 variants. I’ll focus on the evolutionary aspects.
3/64
In SARS-2 evolution, amino acid (AA) mutations get the lion’s share of attention—& rightfully so, as noncoding & synonymous nucleotide muts—which cause no AA change‚ are mostly inconsequential. But there are many exceptions, including a possible new one I find intriguing. 1/30
I’ll discuss four categories of such “silent” mutations, two of which might be involved in the recent growth of one synonymous mutation.
Maybe the single most remarkable example of convergent evolution in SARS-CoV-2 involves noncoding mutations: the multitude of muts in major variants that have pulverized the nucleocapsid (N) Kozak sequence.
I wrote about this below & a few other 🧵s 3/
@SolidEvidence There was yet another paper this week describing someone chronically infected, with serious symptoms, but who repeatedly tested negative for everything with nasopharyngeal swabs. On bronchoalveolar lavage (BAL), they were Covid-positive. 1/ ijidonline.com/article/S1201-…
@SolidEvidence BAL is very rarely performed, yet there must be dozens of documented cases now where NP-swab PRC-negative patients who were very ill tested positive by BAL. This has to be way more common than we realize.
If we had a similar GI test, I imagine we'd find something similar. 2/
@SolidEvidence Importantly, the patient was treated and improved, likely clearing the virus for good. Many, maybe most, chronic infections could be treated and cleared. But they have to know they're infected for that to happen. 3/