Keenan Crane Profile picture
Dec 9, 2021 13 tweets 5 min read Read on X
What's the nicest way to draw a shape with many "holes"?

We can use the principle of repulsion to explore this question: each point of the shape behaves like a charged particle, trying to repel all others. Surface tension prevents everything from shooting off to infinity. 1/n
For millennia people have been drawn to the question: what are the "nicest" possible shapes that exist?

This is really a basic question about nature: these shapes exist outside space and time; the same shapes can be discovered by civilizations anywhere in the universe. 2/n
"Nicest" could mean the most symmetric—for instance, the ancient Greeks discovered there were five so-called Platonic solids where every face and every vertex looks the same: the tetrahedron, cube, octahedron, dodecahedron, and icosahedron. 3/n
Or, "nicest" could mean smoothest.

For instance, according to one criterion (minimum total bending) the smoothest shape with no holes is a round sphere; the smoothest shape with one hole is a perfectly round donut with a certain ratio of inner/outer radii ("Clifford torus"). 4/n
In fact, this principle of least bending even shows up inside the human body. For instance, the shape of red blood cells is extremely well-predicted by minimizing bending among all shapes with a given volume (due to fluid pressure) and surface area (due to surface tension). 5/n
However, shapes that minimize total bending—formally known as "Willmore energy"—don't look as nice if you start adding more holes.

The conjectured minimizers, called "Lawson surfaces," feel pretty asymmetrical compared to how one might imagine an "ideal" shape with holes. 6/n
The reason is that Willmore energy doesn't look for shapes that are nice & symmetrical in the ordinary 3-dimensional space where we live (Euclidean space).

Instead, it considers symmetry relative to the "3-sphere": the set of all points unit distance from the origin in 4D. 7/n
So to get nicer shapes with holes, we can take a different approach.

We look for shapes that minimize the so-called "tangent-point energy," which tries to keep all pairs of points far away from each other—much like the repulsive Coulomb forces exerted by electrons. 8/n
Of course, in the absence of any other forces, two electrons will just shoot off to infinity.

Likewise, to keep our shape from exploding, we need additional forces to hold it together—like the force of surface tension which gives water droplets their nice round shapes. 9/n
Starting with several donuts glued together along a straight line, we then make small changes that gradually reduce tangent-point energy. The final shapes tend to look a lot more "natural" than the Lawson surfaces—often exhibiting the same symmetries as the Platonic solids! 10/n
These shapes were found using the algorithm described in

Yu, Brakensiek, Schumacher, Crane
"Repulsive Surfaces"
cs.cmu.edu/~kmcrane/Proje…

We're hopeful these tools (like KnotPlot & SurfaceEvolver) will help people find more beautiful and natural shapes in the years to come! n/n
If you're interested in finding out more about the technical details behind this movie, you can also check out the talk here:

There's also a higher-quality version of the movie here:

Enjoy!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Keenan Crane

Keenan Crane Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @keenanisalive

Feb 17, 2023
[1/n] There's been a lot of hubbub lately about the best known packing of 17 unit squares into a larger square, owing to this post:

I realized this can be coded up in < 5 minutes in the browser via @UsePenrose, and gave it a try. Pretty darn close! 🧵
[2/n] To be clear, this 🧵 isn't about finding a better packing—or even finding it faster. Wizards like @KangarooPhysics surely have better tricks up their sleeves 🪄

Instead, it's about an awesome *tool* for quickly whipping up constraint-based graphics: penrose.cs.cmu.edu
[3/n] The "17 squares" problem provides a great demonstration of how Penrose works.

In fact, if you want to use this thread as a mini-tutorial, you can try it out at penrose.cs.cmu.edu/try/
Read 23 tweets
Aug 2, 2022
Has machine learning solved computer graphics?

Let's find out by trying to re-create a bunch of classic graphics images using #dalle2! A thread. 🧵 [1/n]

Left: original image
Right: DALL-E 2 image
In each case I tried many times & show the best result. Full query string given.
Let's start with a real classic: a chrome and glass ball over a checkerboard, from Turner Whitted's 1980 paper, "An Improved Illumination Model for Shaded Display": cs.drexel.edu/~david/Classes…

Pretty good job on reflection/refraction! Was hard to get the colors I wanted. [2/n]
Two more classics for the price of one: the Stanford Bunny in a Cornell Box.

Bunny: faculty.cc.gatech.edu/~turk/bunny/bu…
Box: graphics.cornell.edu/online/box/his…

A+ for realism, but I'm still having trouble to get the colors to go where I want them. [3/n]
Read 16 tweets
May 16, 2022
Models in engineering & science have *way* more complexity in geometry/materials than what conventional solvers can handle.

But imagine if simulation was like Monte Carlo rendering: just load up a complex model and hit "go"; don't worry about meshing, basis functions, etc. [1/n] Image
Our #SIGGRAPH2022 paper takes a major step toward this vision by building a bridge between PDEs & volume rendering: cs.dartmouth.edu/wjarosz/public…

Joint work with
@daseybdarioseyb.com
@rohansawhney1rohansawhney.io
@wkjaroszcs.dartmouth.edu/wjarosz/

[2/n] Image
Here's one fun example: heat radiating off of infinitely many aperiodically-arranged black body emitters, each with super-detailed geometry, and super-detailed material coefficients.

From this view alone, the *boundary* meshes have ~600M vertices. Try doing that with FEM! [3/n] Image
Read 47 tweets
Dec 12, 2021
Here's another fun question: given two loops around an (infinite) pole, can you remove one loop without breaking it?

Amazingly enough... yes!

This is a surprising example of what's called an "ambient isotopy": a continuous deformation of space taking one shape to another. 1/n
People have made some great drawings of this transformation over the years (sometimes using a loop rather than an infinite pole—which is equivalent), but it can still be hard to interpolate between individual drawings in your head.

(...does a movie make it any clearer?!) 2/n
What's also fun about the motion in the movie above is that it was created without* human input: instead, the computer tries to nudge the shape around so that every point is as far as possible from itself. You can read all about it in this thread:
3/n
Read 6 tweets
Dec 12, 2021
For the @CarnegieMellon computer graphics take-home final, students have to implement a basic molecular dynamics (MD) simulator.

MD is a basic tool in computational chemistry, drug discovery, and understanding diseases like COVID-19.

Give it a try here!
github.com/CMU-Graphics/m…
Disclaimer: this is a simplified exercise for a final exam and should not be used for serious scientific work! It omits important forces and uses nonphysical constants.

Visualization is provided via the excellent #Polyscope library by CMU alumn @nmwsharp: polyscope.run
Bonus question: can you identify the molecule? :-)
Read 5 tweets
Dec 8, 2021
Suppose you have a pair of handcuffs linked together. Can you pull them apart without unlocking or breaking them, or letting them pass through themselves? With real handcuffs, definitely not! But if they're made of stretchy rubber, it turns out to be possible—as shown here. 1/9
This motion provides a surprising example of what is known in mathematics as an "ambient isotopy" of two surfaces: a continuous motion where the surface is not ripped, cut, pinched, or allowed to pass through itself. 2/9
A more classic example is the "unknot problem": given a loop of string, can it be untangled into a circle without cutting? Even this simple question turns out to be very hard to answer in general. And only gets harder when you start thinking about surfaces rather than curves. 3/9
Read 10 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(