Tivadar Danka Profile picture
Dec 9, 2021 10 tweets 3 min read Read on X
Just released a new chapter in the early access of my Mathematics of Machine Learning book!

It is about computing determinants in practice. Sadly, this is often missing from linear algebra courses, so I decided to fill this gap.

↓ Here's the gist. ↓
The determinant of a matrix is essentially the product of

• the orientation of its column vectors (which is either 1 or -1),
• and the area of the parallelepiped determined by them.

For 2x2 matrices, this is illustrated below.
Here is the thing.

In mathematics, we generally use two formulas to compute this quantity.

First, we have a sum that runs through all permutations of the columns.

This formula is hard to understand, let alone to implement.
The other one is not so good either.

It is a recursive formula, so implementing it is not that hard, but its performance is horrible.

Its complexity is O(n!), which is unfeasible in practice.
We can quickly implement this in Python.
However, it takes almost 30 seconds to calculate the determinant of a 10 x 10 matrix.

This is not going to cut it.
With a little trick, we can simplify this problem a lot.

If the determinant is not zero, we can factor any A into the product of a lower and an upper triangular matrix. This is called the LU decomposition.

As a bonus, the diagonal of L is constant 1.
The LU decomposition takes O(n³) steps to compute, and the determinant of A can be easily read out from it: determinants of triangular matrices equal to the product of the diagonal elements.
So, instead of O(n!), we can calculate determinants at O(n³) time.

The difference is stunning. With the recursive formula, a 10 x 10 determinant took 30 seconds. Using LU decomposition, we can do a 10000 x 10000 one in that time.

A bit of linear algebra can take us very far.
Having a deep understanding of mathematics will make you a better engineer. This is what I want to help you with.

If you are interested in the details and the beauties of linear algebra, check out the early access for my book!

tivadar.gumroad.com/l/mathematics-…

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Sep 11
Logistic regression is one of the simplest models in machine learning, and one of the most revealing.

It shows how to move from geometric intuition to probabilistic reasoning. Mastering it sets the foundation for everything else.

Let’s dissect it step by step! Image
Let’s start with the most basic setup possible: one feature, two classes.

You’re predicting if a student passes or fails based on hours studied.

Your input x is a number, and your output y is either 0 or 1.

Let's build a predictive model! Image
We need a model that outputs values between 0 and 1.

Enter the sigmoid function: σ(ax + b).

If σ(ax + b) > 0.5, we predict pass (1).

Otherwise, fail (0).

It’s a clean way to represent uncertainty with math. Image
Read 15 tweets
Sep 8
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Sep 7
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Sep 7
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Sep 5
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 16 tweets
Sep 5
The single biggest argument about statistics: is probability frequentist or Bayesian?

It's neither, and I'll explain why.

Deep-dive explanation incoming: Image
First, let's look at what probability is.

Probability quantitatively measures the likelihood of events, like rolling six with a die. It's a number between zero and one.

This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

The event space is also a set, usually denoted by Ω.) Image
Read 34 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(