1/6 Imagine that: Omicron is undergoing phenomenally fast exponential growth in the US, just like in the UK, Denmark, and South Africa. Crossing the Atlantic didn't impair its transmissibility. Who could've guessed?
2/6 Take it from the master himself, Trevor B: "There is an inevitable very large wave of Omicron. It's going to happen." nytimes.com/live/2021/12/1…
3/6 There's such an air of fatalism around all this, as if we are utterly incapable of doing anything that could dampen or avert a devastating Omicron wave. Hospitals are already at max capacity in many states. An Omicron tsunami approaches, & we collectively shrug our shoulders.
4/6 Epidemiologist @sanghyuk_shin of UC Irvine: "We need to take this seriously, starting now. If we have learned anything on how this virus operates—it’s that any kind of mitigation, the earlier the better...." voiceofoc.org/2021/12/local-…
5/6 "...There is really no evidence that suggests that Omicron is going to be mild, there’s no evidence that it is less virulent."
6/6 At a company Christmas party at an Oslo restaurant, 80 out of 111 young (ages 30-50), 2-dose vaccinated Norwegians were infected with Omicron. Only 1 of the 80 was asymptomatic (none hospitalized). I've never heard of an asymptomatic rate so low. It doesn't suggest mildness.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
@yaem98684142 @TBM4_JP This analysis is extremely flawed.
There is nothing abnormal about BA.2.86 appearing in multiple countries shortly after discovery. This has been the norm lately w/reduced surveillance. 1/
@yaem98684142 @TBM4_JP The mutational spectrum analysis is poorly done. It cites a single study looking at the mutational spectrum in *three* immunocompromised individuals. Needless to say, this sample size is WAY too small. 3/
@yaem98684142 @TBM4_JP Furthermore, the IC people examined did not give rise to highly divergent variants with a large number of spike mutations. They appear to have accumulated a very modest number of mutations, with few substitutions in spike. The sequences themselves are apparently not published. 4/
Interesting recombinant showed up today from Texas. It's a mixture of B.1.595, BA.1, and some flavor of JN.1. Most of the genome is from B.1.595. The ancestry of this one is clear: it directly descends from a B.1.595 sequence collected in January 2023, also in Texas. 1/11
When the B.1.595 was collected this infection was >1 yr old, w/no sign of Omicron. BA.1 ceased circulating ~1 year prior.
Now a BA.1 spike appears w/just 5 changes from baseline BA.1, none in the RBD—S12F, T76I, Q271K, R765H, S939F.
This is a zombie BA.1 spike. 2/
There are only a few signs of JN.1, & they're scattered. In ORF1a, we see JN.1's V3593F, P3395H, & R3821K, but the NSP6 deletion btwn these—universal in Omicron—is absent. In
M has JN.1's D3H + T30A & E19Q (in JN.1 & BA.1), yet A63T—also in both BA.1 & JN.1 is absent. 3/11
An awesome preprint on the novel, unsung SARS-CoV-2 N* protein came out recently, authored by @corcoran_lab & Rory Mulloy. I’ve previously written on N*’s demise in XEC, the top variant in late 2024/early 2025. But…
1/34
…this preprint, along with another great study by the @DavidLVBauer, @theosanderson, @PeacockFlu & others prompted me to take a closer look...
2/34biorxiv.org/content/10.110…
...and for reasons I’ll describe below, I now believe rumors of N*’s death are exaggerated.
First, XEC is in terminal decline, replaced by variants with full N* expression, so N* is back in fashion.
3/34 journals.plos.org/plosbiology/ar…
@DameSunshine @SharonBurnabyBC B.1.1.529 wasn't/isn't a real variant; it's a placeholder that represents a putative ancestor of BA.1/BA.2/BA.3.
Bad sequences and/or coinfections tend to get categorized as B.1.1.529:—they have enough Omicron muts to be ID'd as Omicron but so much dropout/mixed signals...
1/
@DameSunshine @SharonBurnabyBC ...that a specific designation isn't possible. Travel sequencing in the US is done by Ginkgo Bioworks. Their sequences are generally poor quality & they upload *pooled* sequences—against database guidelines. The B.1.1.529 here are likely low-quality/pooled sequences from GBW.
2/
@DameSunshine @SharonBurnabyBC I think it's entirely possible that a new, divergent variant will emerge this summer. There are hints with BA.3.2 & a 50-spike-mutation BQ.1.1 that has transmitted at least once. Other similar chronic infection-derived variants are undoubtedly lurking all over, unsequenced.... 3/
Incredible how quickly @yunlong_cao & co provide us w/info on the latest emerging SARS-CoV-2 variants.
Already, we have great data on BA.3.2 (the divergent saltation lineage detected in South Africa & the Netherlands & NB.1.8.1, an emerging contender for global dominance. 1/9
BA.3.2 is a clear outlier on the antigenic cartography map—as expected given the enormous differences between its spike protein & every other circulating variant. 2/9
It's unsurprising, therefore, that BA.3.2 evades antibodies from human sera more effectively than any other variant, though the degree of its superiority is striking. 3/9 biorxiv.org/content/10.110…
About 1 month after this monster BQ.1.1 appeared, an even more extreme sequence has shown up in Alberta. Like the BQ, it has 50 private spike mutations, but it also has >40 AA mutations elsewhere in the genome. 1/6
They include the full panoply of NSP3, NSP12, & N muts I've written about previously. ORF1a:S4398L is the most common mutation in the 4395-4398 region, this has ∆S4398, a rarity also seen in a few other extremely divergent seqs w/this constellation. 2/6
In a theme that's become familiar, it's added two spike NTD glycans, N30 (via F32S) and N155 (via S155N+F157S).
Another chronic-infection leitmotif (first noted by @SolidEvidence): reversions to common or consensus residues in related Bat-CoVs, including SARS-1. 3/6