Tivadar Danka Profile picture
Dec 27, 2021 15 tweets 4 min read Read on X
Entropy is not the easiest thing to understand.

It is rumored to describe something about information and disorder, but it is unclear why.

What do logarithms and sums have to do with the concept of information?

Let me explain!

↓ A thread. ↓ Image
I have randomly selected an integer between 0 and 31.

Can you guess which one? You can ask as many questions as you want.

What is the minimum number of questions you have to ask to be 100% sure?

You can start guessing the numbers one by one, sure. But there is a better way!
If you ask, "is the number larger or equal than 16?" you immediately eliminate half the search space!

Continuing with this tactic, you can find the number for sure in 5 questions.
In other words, we need to take the base two logarithm of 32 to get the number of questions required.

This logic applies to all numbers! If I pick a number between 0 and 𝑛-1, you need 𝑙𝑜𝑔(2, 𝑛) questions to find it for sure, by cutting the possibilities in half with each.
Because the answers are yes-or-no questions, we can encode each with a 0 or 1.

If we write down the answers in a row, we effectively encode the numbers in 𝑛 bits!

𝟎: 00000
𝟏: 00001
𝟐: 00010
...
𝟑𝟏: 11111

Each "code" is simply the number in base 2!
No matter which number I pick, five questions are needed to find it.

So, the average number of bits needed is also five.

However, we use a critical assumption here: I pick each number with an equal probability.

What if that is not the case?
Let's say I am picking between 0, 1, and 2, but I am picking 0 at 50% of the time, while 1 and 2 only 25% of the time.

We should put this into mathematical form!

Let's denote the number I pick with 𝑋. This is a random variable.

How many bits do we need now? Image
We can be more bit-efficient than before! Consider this.

1st question: did you pick 0?
If the answer is yes, the 2nd question is not needed. If not, we proceed!

2nd question: did you pick 1?
No matter what the answer is, we know the solution! Yes implies 1, no implies 2.
Following this idea, we can calculate the average number of bits as below. Image
(This is just the expected value of the number of bits.

If you didn't understand this step, check out my explanation about the expected value!)

)
Now we are almost there! Let's see the general case.

Suppose I pick between 𝑥₁, 𝑥₂, ..., 𝑥ₙ, and I pick 𝑥ₖ with probability 𝑝ₖ.

As before, the number of questions needed to find 𝑘 is the base two logarithm of 1/𝑝ₖ! Image
So, the entropy of a random variable is simply the average bits of information needed to guess its value successfully! Even though the formula is complicated, its meaning is simple.

Entropy is simpler than you thought! (And probably also simpler than what you were taught.) Image
Having a deep understanding of math will make you a better engineer. I want to help you with this, so I am writing a comprehensive book about the subject.

If you are interested in the details and beauties of mathematics, check out the early access!

tivadardanka.com/book
A few extra comments!

1. What happens if the logarithm of the probability is not an integer?

Not all questions provide 100% new information. Sometimes, the answer is partially contained in other bits.

Hence, the "amount of new information" is not always an integer.
2. Does the base of the logarithm matter?

In general, we can easily swap the base of the logarithms, as shown below.

Thus, swapping bases in the entropy formula is just multiplication with a constant. Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 25
The following multiplication method makes everybody wish they had been taught math like this in school.

It's not just a cute visual tool: it illuminates how and why long multiplication works.

Here is the full story: Image
First, the method.

The first operand (21 in our case) is represented by two groups of lines: two lines in the first (1st digit), and one in the second (2nd digit).

One group for each digit.
Similarly, the second operand (32) is encoded with two groups of lines, one for each digit.

These lines are perpendicular to the previous ones.
Read 10 tweets
Oct 21
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 20
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Oct 19
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.

Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.

What is the law of large numbers, then? Read on: Image
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.

So, let’s stick with coin tossing.

What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.

Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables. Image
Read 17 tweets
Oct 15
I have spent at least 50% of my life studying, practicing, and teaching mathematics.

The most common misconceptions I encounter:

• Mathematics is useless
• You must be good with numbers
• You must be talented to do math

These are all wrong. Here's what math is really about: Image
Let's start with a story.

There’s a reason why the best ideas come during showers or walks. They allow the mind to wander freely, unchained from the restraints of focus.

One particular example is graph theory, born from the regular daily walks of the legendary Leonhard Euler.
Here is the map of Königsberg (now known as Kaliningrad, Russia), where these famous walks took place.

This part of the city is interrupted by several rivers and bridges.

(I cheated a little and drew the bridges that were there in Euler's time, but not now). Image
Read 15 tweets
Oct 14
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(