BA.2 continues to do its thing in Denmark. The two most recent days of sequencing (January 20 & 21) recorded 74.2% BA.2 (285 of 384 cases). 1/9
The exponential increase in the proportion of BA.2 cases continues in the UK.
The apparent slowdown in growth in the past several days is entirely due to 0 of 8 sequences being BA.2 over the past four days & should therefore be ignored. 2/9
Similar exponential increase in the percentage of BA.2 cases in the US.
Again, the illusory plunge over the last five days is entirely due to a very small number of sequences and should be ignored. 3/9
My home state of Indiana had recorded zero BA.2 cases before last night's update, when six cases were recorded in the most recent week of sequencing, indicating a substantial percentage of BA.2. Major caveat: sample size very small. 4/9
Germany's BA.2 path is similar to what Denmark's was early on. A recent report found that 30% of cases in Berlin were BA.2, so as has been the case elsewhere, large cities with lots of international travelers are leading the way. 5/9
Japan finally has enough BA.2 to provide a decent indication of it's path. Surprise!—it's upward.
(Once again, the tiny sample sizes in recent days mean the illusory plunge at the end should be ignored.) 6/9
Not much sequencing in Portugal, but in the most recent day of sequencing, which was two weeks ago, all eight cases sequenced were BA.2. 7/9
Spain, like Portugal, has poor genetic surveillance, but is seeing a similarly steep rise in BA.2.
Small sample size makes this a pretty unreliable estimate, however. 8/9
Most of the other countries whose graphs I posted in a previous BA.2 update have seen little change. Not much has changed in Sweden, but I'll include it here since it has among the highest level of BA.2 among countries with decent sequencing. 9/9
I was rushed when putting together this thread and made a mistake in the number of BA.2 cases recorded in Indiana. There have actually been 12 BA.2 sequences in the most recent 8 days of sequencing, not 6. This gives Indiana the highest percentage of BA.2 of any US state.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Very proud to be a co-author on this comprehensive preprint on the novel, growing saltation lineage BA.3.2, together with @Tuliodna, Darren Martin, Dikeledi Kekana, and lead author @graemedor. 1/9
I would normally write a summary 🧵 of the BA.3.2 mutational analysis here, but as much of my contribution parallels my previous BA.3.2 threads I'll just link to those here, w/brief descriptions of each.
BA.3.2 emerged in Nov 2024 after ~3 years of intrahost evolution with >50 new spike AA muts, but since then, it's changed very little. Could the drug molnupiravir (MOV) galvanize BA.3.2 into pursuing new evolutionary paths? A new 89-mut MOV BA.3.2 seq suggests it could. 1/11
Background on MOV: It's a mutagenic drug. Its purpose is to cause so many mutations that the virus becomes unviable & is cleared. But we've long known this often does not happen. Instead, the virus persists in highly mutated form & can be transmitted. 2/
I was an author on a paper published in @Nature that conclusively showed not only that MOV has created highly mutated, persistent viruses, but that these viruses have transmitted numerous times. See 🧵 below by lead author @theosanderson. 3/
The most valuable viral research tools—@nextstrain & CovSpectrum—are being destroyed, not only blocked from new data but now forbidden from even sharing info from the PAST. Why?
Because GISAID is run dictatorially by a con man, paranoid egomaniac, & liar named Peter Bogner. 1/
I use CovSpectrum & Nextstrain every day—& I'm not the only one. Every Covid thread I've ever posted here has relied partly on CovSpectrum & Nextstrain for information & visuals. These vital tools have now been stolen from us by a world-class grifter. 2/ thinkglobalhealth.org/article/to-fin…
For years scientists knew something was very, very wrong with GISAID, but the breakout story (from which much of this 🧵is based) came 2 years ago in @ScienceMagazine from @sciencecohen & Martin Enserik. 3/ science.org/content/articl…
3/77 sequences from the latest Netherlands upload are BA.3.2 as well as 4/86 seqs from Queensland, Australia, consistent w/the steady, slow growth we've seen in Germany, the UK, Ireland, & much of Australia. 1/4
One interesting (and possibly coincidental) aspect of the BA.3.2 tree: Two large branches have NSP14 mutations at adjacent AA residues—ORF1b:T1896I and ORF1b:H1897Y. 2/4
I don't have any idea what functional effects either of these mutations would have. They are both C->T mutations, which is the most common type, but they've been relatively uncommon throughout the pandemic, with fewer than 8000 sequences combined. 3/4
The first instance involved a small cluster of sequences that hospitalized several people & resulted in the death of a young child in early 2022. More on this one later. 2/15
The most recent example requires some background. In late 2024, a spectacularly mutated Delta appeared in Spain with 40 new spike mutations and numerous Cryptic markers.
Normally, I would write a thread about such a remarkable sequence, but there were some issues... 3/15
@StuartTurville has pointed out that WA delayed Covid spread longer than elsewhere in Australia. China has a somewhat similar immune history (as do other SE Asian countries). Perhaps BA.3.2 will do well in China once it arrives there? 2/4