We’d like to inform you that [redacted dot com], a leading academic platform for researchers, has just released the 2022 Edition of our Ranking of Top 1000 Scientists in the field of Mathematics.
The ranking is based on the H-index metric provided by Microsoft Academic and includes only leading scientists with an H-index of at least 30 for academic publications made in the area of Mathematics.
The full world ranking is available here: [redacted URL]
The annual release of our ranking is regularly featured by leading universities worldwide, including the University of Maryland, Stanford Robotics Lab, or the University of Texas, and it is a great opportunity to explore where leading experts are heading.
If you’d like to share or discuss the ranking with your colleagues or scientific community, feel free to distribute and publicize it in any way you see fit.
With Best Regards,
Imed Bourchrika, PhD
[redacted dot com]
»
Yes, I would very much like to discuss and publicize the fact that I am receiving such spam, encouraging the hateful practice of bibliometrics, at an email address I only used to sign academic papers. And the “way I see fit” is by telling you publicly to f🤬ck off.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
So, here's a good approximation of a regular pentagon on a square lattice (to save you the bother of counting, the vertex positions are, up to translation: (0, 55), (−29, 34), (−18, 0), (18, 0), (29, 34)). How did I find it? 🧵⤵️ •1/18
Easy, you say: just pick any regular pentagon in the plane, and replace each one of its vertices by the closest lattice point! Well… yes, but that will give a very shitty approximation. To be honest, I didn't bother to compute how shitty, … •2/18
… but if you don't use the freedom to choose the size and orientation of your near-regular pentagon arbitrarily in the lattice, you won't do a good job (much like if you try to approximate ξ by rational p/q, you shouldn't just pick q arbitrarily and take p close to qξ). •3/18
Full disclosure: at the time, I may have been part of the cult-like following around RMS that Laurent mentions.
In particular, I remember leading a group of free software geeks around a (ahem) “Linux” expo in the late 1990's (still fairly rare then, at least in France), chanting: “Join us now and share the software: you'll be free, hackers, you'll be free!” gnu.org/music/free-sof…
If I claimed that these three vertices of a square grid form an equilateral triangle, would you believe me? A few thoughts on this question. 🧵⤵️ •1/26
Well, assuming you're not the sort of person who uses a ruler to measure on a monitor (in which case it may be hard to make the call), maybe you use the Pythagorean theorem and compare 4²+15² = 241 to 11²+11² = 242 to conclude that the bottom-right edge is a bit longer. •2/26
But maybe you just know that there are no three vertices of a square lattice that form an equilateral triangle: so I must have cheated. This seems to be the sort of math fact that everyone knows somehow. But why is it true, again? •3/26
Je sais que pour arriver à un haut niveau dans l'administration de la Recherche il faut ne pas trop aimer pratiquer cette dernière puisqu'on lui préfère l'administration, — mais même comme ça, le niveau de bêtise des propos proférés par Antoine Petit ne cesse de me surprendre.
Cherche-t-il à justifier toutes les têtes sur lesquelles il a dû marcher en faisant passer ça pour une saine compétition? À convaincre que comme il a le titre ronflant de PDG du CNRS, c'est qu'il est «le premier» en quelque chose? Je l'ignore.
Il est fort possible que les gens voulant à tout prix être premiers soient de bons chercheurs. (Peut-être que Petit lui-même est excellent — je n'en sais rien.) Mais même si c'est le cas, ce n'est pas en les attirant qu'on obtiendra un progrès collectif:
Since I mentioned The Backrooms (in citing a weird thread about a supposedly real experience that has now been made protected so maybe it was just made up, or maybe They Don't Want Us To Know The Truth™), a few remarks about this Internet legend. ⤵️ •1/10
Since just about forever, I've been fascinated and terrified at once with the idea of huge labyrinthine spaces taking the form of more or less benign empty / abandoned places. I often have dreams about such places that aren't really nightmares but are still disquieting. •2/10
This seems to relate to another fear-with-fascination of mine (or is it just a variation of the same?), that of abandoned places, especially industrial ones, and urban exploration. •3/10
Promenade cet après-midi avec @Conscrit_Neuneu dans la forêt de Galluis dans le Vexin. openstreetmap.org/#map=13/49.066… Arrivés par Frémainville, ça commençait bien. Mais rapidement nous sommes tombés sur un endroit appelé les “carrières de Feularde(s?)”, et là c'était moins drôle! …
… Ces carrières de Feularde sont un labyrinthe de petits lacs, mares, flaques d'eau dans un terrain boueux (argileux) dévasté par les traces d'engins d'exploitation forestière et/ou de quads ou motocross. Pas agréable du tout de s'y perdre. ……
… (J'écris “perdre”, évidemment nous avions notre position par GPS sur nos smartphones, mais les chemins marqués sur la carte IGN ou OSM n'existaient pas dans la réalité ou inversement. Et des mares infranchissables pouvaient les couper. Nous avons beaucoup erré.)