Tivadar Danka Profile picture
Mar 3, 2022 13 tweets 5 min read Read on X
There is more than one way to think about matrix multiplication.

By definition, it is not easy to understand. However, there are multiple ways of looking at it, each one revealing invaluable insights.

Let's take a look at them!

↓ A thread. ↓
First, let's unravel the definition and visualize what happens.

For instance, the element in the 2nd row and 1st column of the product matrix is created from the 2nd row of the left and 1st column of the right matrices by summing their elementwise product.
To move beyond the definition, let's introduce some notations.

A matrix is built from rows and vectors. These can be viewed as individual vectors.

You can think of them as a horizontal stack of column vectors or a vertical stack of row vectors.
Let's start by multiplying a matrix and a row vector.

By writing out the definition, it turns out that the product is just a linear combination of the columns, where the coefficients are determined by the vector we are multiplying with!
Taking this one step further, we can stack another vector.

This way, we can see that the product of an (n x n) and an (n x 2) matrix equals the product of the left matrix and the columns of the right matrix, horizontally stacked.
Applying the same logic, we can finally see that the product matrix is nothing else than the left matrix times the columns of the right matrix, horizontally stacked.

This is an extremely powerful way of thinking about matrix multiplication.
We can also get the product as vertically stacked row vectors by switching our viewpoint a bit.
There is another interpretation of matrix multiplication.

Let's rewind and go back to the beginning, studying the product of a matrix 𝐴 and a column vector 𝑥.

Do the sums in the result look familiar?
These sums are just the dot product of the row vectors of 𝐴, taken with the column vector 𝑥!
In general, the product of 𝐴 and 𝐵 is simply the dot products of row vectors from 𝐴 and column vectors from 𝐵!
To sum up, we have three interpretations: matrix multiplication as

1. vertically stacking row vectors,
2. horizontally stacking column vectors,
3. and as dot products of row vectors with column vectors.

When studying matrices, each of them is immensely useful.
Having a deep understanding of math will make you a better engineer. I want to help you with this, so I am writing a comprehensive book about the subject.

If you are interested in the details and beauties of mathematics, check out the early access!

tivadardanka.com/book
If you have enjoyed this thread, consider giving it a retweet and following me!

I regularly post deep-dive explanations about seemingly complex concepts from mathematics and machine learning.

Mathematics is beautiful, and I want to show this to you.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 25
The following multiplication method makes everybody wish they had been taught math like this in school.

It's not just a cute visual tool: it illuminates how and why long multiplication works.

Here is the full story: Image
First, the method.

The first operand (21 in our case) is represented by two groups of lines: two lines in the first (1st digit), and one in the second (2nd digit).

One group for each digit.
Similarly, the second operand (32) is encoded with two groups of lines, one for each digit.

These lines are perpendicular to the previous ones.
Read 10 tweets
Oct 21
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 20
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Oct 19
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.

Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.

What is the law of large numbers, then? Read on: Image
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.

So, let’s stick with coin tossing.

What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.

Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables. Image
Read 17 tweets
Oct 15
I have spent at least 50% of my life studying, practicing, and teaching mathematics.

The most common misconceptions I encounter:

• Mathematics is useless
• You must be good with numbers
• You must be talented to do math

These are all wrong. Here's what math is really about: Image
Let's start with a story.

There’s a reason why the best ideas come during showers or walks. They allow the mind to wander freely, unchained from the restraints of focus.

One particular example is graph theory, born from the regular daily walks of the legendary Leonhard Euler.
Here is the map of Königsberg (now known as Kaliningrad, Russia), where these famous walks took place.

This part of the city is interrupted by several rivers and bridges.

(I cheated a little and drew the bridges that were there in Euler's time, but not now). Image
Read 15 tweets
Oct 14
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(