Tivadar Danka Profile picture
Mar 8, 2022 14 tweets 5 min read Read on X
Differentiation reveals much more than the slope of the tangent plane.

We like to think about it that way, but from a different angle, differentiation is the same as an approximation with a linear function. This allows us to greatly generalize the concept.

Let's see why! ↓
By definition, the derivative of a function at the point 𝑎 is defined by the limit of the difference quotient, representing the rate of change.
In geometric terms, the differential quotient represents the slope of the line between two points of the function's graph.
However, differentiation can be formulated in another way.

We can write the difference quotient as the derivative plus an error term (if the derivative exists).
With a bit of algebra, we obtain that around 𝑎, we can replace our function with a linear function. The derivative gives the coefficient of the 𝑥 term.

(The term 𝑜(|𝑥-𝑎|) means that it goes to 0 faster than |𝑥-𝑎|. This is called the small o notation.)
So, the derivative is the first-order coefficient of the best linear approximation. Why is this good for us? There are two main reasons:

1) this gives a template to explain higher-order derivatives,

2) and one can easily extend the formula for multivariable functions.
Let's talk about higher-order derivatives first.

Going further with the idea, we might ask, what is the second-order polynomial that best approximates our function around a given point?

It turns out that we can continue our formula with the help of the second derivative.
In general, we can continue this expansion indefinitely. The more terms you use, the smaller the error gets.

This is called the Taylor polynomial, one of the most powerful tools in mathematics.

I'll show you an example to see why.
Have you ever wondered what happens when you type in the sine of some number into a hand calculator?

Since sin is a transcendental function, it is replaced with an approximation, such as its Taylor expansion that you can see below.
Now let's talk about the generalization of differentiation to multiple dimensions.

How would you define the derivative of a multivariable function? The most straightforward way would be as below, but there is a problem: division is not defined for vectors.
However, the definition offered by the best approximating linear function can be easily generalized!

The gradient (the multivariate "derivative") is the vector that gives the best linear approximation around a given point.
Having a deep understanding of math will make you a better engineer. I want to help you with this, so I am writing a comprehensive book about the subject.

If you are interested in the details and beauties of mathematics, check out the early access!

tivadardanka.com/book
Correction! When talking about the higher order differentiation and the Taylor expansion, I sadly forgot to include one crucial part of the formula: the factorials.

Below are the correct formulas.
The Taylor expansion:

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Oct 25
The following multiplication method makes everybody wish they had been taught math like this in school.

It's not just a cute visual tool: it illuminates how and why long multiplication works.

Here is the full story: Image
First, the method.

The first operand (21 in our case) is represented by two groups of lines: two lines in the first (1st digit), and one in the second (2nd digit).

One group for each digit.
Similarly, the second operand (32) is encoded with two groups of lines, one for each digit.

These lines are perpendicular to the previous ones.
Read 10 tweets
Oct 21
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Oct 20
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Oct 19
The Law of Large Numbers is one of the most frequently misunderstood concepts of probability and statistics.

Just because you lost ten blackjack games in a row, it doesn’t mean that you’ll be more likely to be lucky next time.

What is the law of large numbers, then? Read on: Image
The strength of probability theory lies in its ability to translate complex random phenomena into coin tosses, dice rolls, and other simple experiments.

So, let’s stick with coin tossing.

What will the average number of heads be if we toss a coin, say, a thousand times?
To mathematically formalize this question, we’ll need random variables.

Tossing a fair coin is described by the Bernoulli distribution, so let X₁, X₂, … be such independent and identically distributed random variables. Image
Read 17 tweets
Oct 15
I have spent at least 50% of my life studying, practicing, and teaching mathematics.

The most common misconceptions I encounter:

• Mathematics is useless
• You must be good with numbers
• You must be talented to do math

These are all wrong. Here's what math is really about: Image
Let's start with a story.

There’s a reason why the best ideas come during showers or walks. They allow the mind to wander freely, unchained from the restraints of focus.

One particular example is graph theory, born from the regular daily walks of the legendary Leonhard Euler.
Here is the map of Königsberg (now known as Kaliningrad, Russia), where these famous walks took place.

This part of the city is interrupted by several rivers and bridges.

(I cheated a little and drew the bridges that were there in Euler's time, but not now). Image
Read 15 tweets
Oct 14
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(