Tivadar Danka Profile picture
Mar 8, 2022 14 tweets 5 min read Read on X
Differentiation reveals much more than the slope of the tangent plane.

We like to think about it that way, but from a different angle, differentiation is the same as an approximation with a linear function. This allows us to greatly generalize the concept.

Let's see why! ↓
By definition, the derivative of a function at the point 𝑎 is defined by the limit of the difference quotient, representing the rate of change.
In geometric terms, the differential quotient represents the slope of the line between two points of the function's graph.
However, differentiation can be formulated in another way.

We can write the difference quotient as the derivative plus an error term (if the derivative exists).
With a bit of algebra, we obtain that around 𝑎, we can replace our function with a linear function. The derivative gives the coefficient of the 𝑥 term.

(The term 𝑜(|𝑥-𝑎|) means that it goes to 0 faster than |𝑥-𝑎|. This is called the small o notation.)
So, the derivative is the first-order coefficient of the best linear approximation. Why is this good for us? There are two main reasons:

1) this gives a template to explain higher-order derivatives,

2) and one can easily extend the formula for multivariable functions.
Let's talk about higher-order derivatives first.

Going further with the idea, we might ask, what is the second-order polynomial that best approximates our function around a given point?

It turns out that we can continue our formula with the help of the second derivative.
In general, we can continue this expansion indefinitely. The more terms you use, the smaller the error gets.

This is called the Taylor polynomial, one of the most powerful tools in mathematics.

I'll show you an example to see why.
Have you ever wondered what happens when you type in the sine of some number into a hand calculator?

Since sin is a transcendental function, it is replaced with an approximation, such as its Taylor expansion that you can see below.
Now let's talk about the generalization of differentiation to multiple dimensions.

How would you define the derivative of a multivariable function? The most straightforward way would be as below, but there is a problem: division is not defined for vectors.
However, the definition offered by the best approximating linear function can be easily generalized!

The gradient (the multivariate "derivative") is the vector that gives the best linear approximation around a given point.
Having a deep understanding of math will make you a better engineer. I want to help you with this, so I am writing a comprehensive book about the subject.

If you are interested in the details and beauties of mathematics, check out the early access!

tivadardanka.com/book
Correction! When talking about the higher order differentiation and the Taylor expansion, I sadly forgot to include one crucial part of the formula: the factorials.

Below are the correct formulas.
The Taylor expansion:

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Sep 11
Logistic regression is one of the simplest models in machine learning, and one of the most revealing.

It shows how to move from geometric intuition to probabilistic reasoning. Mastering it sets the foundation for everything else.

Let’s dissect it step by step! Image
Let’s start with the most basic setup possible: one feature, two classes.

You’re predicting if a student passes or fails based on hours studied.

Your input x is a number, and your output y is either 0 or 1.

Let's build a predictive model! Image
We need a model that outputs values between 0 and 1.

Enter the sigmoid function: σ(ax + b).

If σ(ax + b) > 0.5, we predict pass (1).

Otherwise, fail (0).

It’s a clean way to represent uncertainty with math. Image
Read 15 tweets
Sep 8
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Sep 7
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Sep 7
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Sep 5
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 16 tweets
Sep 5
The single biggest argument about statistics: is probability frequentist or Bayesian?

It's neither, and I'll explain why.

Deep-dive explanation incoming: Image
First, let's look at what probability is.

Probability quantitatively measures the likelihood of events, like rolling six with a die. It's a number between zero and one.

This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

The event space is also a set, usually denoted by Ω.) Image
Read 34 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(