Phil Metzger Profile picture
May 29, 2022 27 tweets 10 min read Read on X
Another interesting fact: a lot of the darker, new tiles (the replacements) are located over antennas, which we sometimes used as convenient access points for airframe structural inspections between flights. /1
2/ You can tell these are the antenna locations by the four white chevrons painted onto the tiles around each antenna. We used those to align ground-testing antennas to verify the comm/nav systems worked before the next flight.
3/ Another interesting fact: each tile has a hole in it with a white circle painted around the hole so technicians could find it. That hole was used to inject water-proofing spray into the inside of every single tile before each rollout to the launch pad. I marked a few examples:
4/ Oh, but why did we have to spray water-proofing spray inside each and every Space Shuttle tile before every launch? Those tiles protect against the super hot plasma during re-entry from space, and we know there isn’t any water up there! I’m glad you asked…
5/ The problem was that the Space Shuttle had to sit through frequent rainstorms while it was on the launch pad, and if rain seeped into the tiles then it would add a huge amount of weight to the vehicle, which could prevent it from achieving the desired orbit.
6/ But why weren’t the tiles simply sealed so the rain couldn’t get in? I mean, if you had to cut a hole in the surface to inject the water-proofing spray, then the water shouldn’t be able to get in anyhow, right? Well no, because we couldn’t actually seal the tiles. Why not?…
7/ Because the tiles were 90% hollow and were filled with air, and when the Space Shuttle flew up into the vacuum of space, the air needed to easily get out of the tiles or then pressure would make them explode and then they would not protect the Shuttle during landing.
8/ But why were they 90% hollow? Because the whole point of them was to be excellent insulators during hot re-entry from space. They were made of tiny silica fibers that barely touched each other so heat could barely conduct through them.
9/ Here’s an interesting video on how they were made. They were such good insulators you could heat them to glowing-hot while holding them in your hand. newsflare.com/video/173291/w…
10/ So then, if they had to let air out while launching, and the coating couldn’t keep water out, then why have the coating? Two reasons. 1st, to be a smooth surface so the plasma would flow without turbulence over the surface during entry to minimize heating. And…
11/ 2nd, to have high emissivity in the desired wavelengths so heat that *did* get into the tiles from the hot plasma would radiate back to space more easily than go into the skin of the Space Shuttle. Thus, they were black over the hotter parts, white over the cooler parts.
12/ So they were hollow, filled with air that needed to get out while the Shuttle was “going uphill”, but they had to be coated which would restrict the air getting out. So the coating was simply left off near the base of every tile, allowing the air an escape path.
13/ So that escape path for the air meant that the rain could get into the tiles before launch, weighing the vehicle down tremendously, and that would have been a giant problem!
14/ Part of the reason this problem was so giant was that the silica fibers that make up the body of each tile are hydrophilic — “water loving”. Water clings to it. Any water that got into a tile would never want to come out again. It would become happy water inside its new home.
15/ Materials are sometimes classified as hydrophobic — water tries to get away from it — or hydrophilic — water clings to it. The coating on this leaf is hydrophobic, so water beads-up and wants to run off the leaf. (Source: scitechdaily.com/more-efficient…)
16/ The fibers in jeans are hydrophilic, so if you go snow skiing you get wet. That’s why, back in the day, we used Scotchgard on jeans to go skiing. Scotchgard is hydrophobic. It’s pretty much the same thing we sprayed into Shuttle tiles.
17/ Remember learning about a meniscus back in high school or college chemistry lab? It’s that curve of the water inside a glass container. That’s because glass is hydrophilic, so water loves it and wants to climb up the sides of the glass. Shuttle tile fibers are silica (glass).
18/ After installing the tiles, we could not get access to the uncoated parts of the tile to spray “Scotchgard” into each tile to keep the rain out, so they had to poke the little holes in the coating of each tile (in the little circles in this picture) to inject the spray. But…
19/ …now your gonna ask, why not just spray in the Scotchgard BEFORE installing the tiles, when we still had access to the uncoated parts near the base of each tile? Wouldn’t that be easier than injecting each tile one-by-one AFTER installation? Well…
20/ The problem was that the “Scotchgard” burns out of the tiles during that super hot re-entry. It was vaporized by the heat and then it escaped from the tiles the same way the air escaped. So we had to reinject it into every tile all over again before every flight.
21/ So we had hollow tiles for heat protection, high emissivity coating on the tiles, a gap in the coating to let the air out, Scotchgard for inside the tiles to keep the rain out, and tiny holes to spray the Scotchgard in after every landing before going back out to the pad. BUT
22/ There was still one problem. Sometimes the Shuttle came back from a mission, freshly burned-out from all its Scotchgard, and before it was towed back to the hangar a thunderstorm rolled in and the tiles got soaked full of water. Florida weather changes fast.
23/ So then we are back to square one: how do we get those tons of water to come back out of the hydrophilic tiles before spraying in the new Scotchgard? Heat lamps did not work. It just moved the water around the outside of the vehicle to the cold side, never leaving the tiles.
24/ I used to be a Space Shuttle comm/nav engineer and later became a physicist. My first physics project at NASA was to study how to get water out of the Space Shuttle tiles. I did experiments filling them with water and sucking it back out using a vacuum hose on the same holes.
25/ It was a really cool condensed matter project because the water droplets did a directed (but randomized) walk through the fibers, with denser fibers holding the water more tightly so it was diffusion thru random potential wells. It resulted in stretched exponential curves.
26/ In the end we used those results to help decide how long to suck on the tiles before removing the suction cups and moving on to the next batch of tiles. The system could suck the Shuttle dry in a few days, whereas heat lamps took months and still couldn’t get the water out.
27/ So when I look at Shuttle tiles I think of those 2 things: the white chevrons marking the comm/nav antennas which I worked on for 10 years as part of the launch team, then the tiny holes where we sucked water out after (later) becoming a physicist. Fond memories! /end

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Phil Metzger

Phil Metzger Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @DrPhiltill

May 18
1/ Let’s walk through a mining competition cycle. The students take their robots to the judge station for inspection and weigh-in. (More points awarded for lower-mass robots.) Image
Image
2/ They set their robots on the forklift platform to lift into the arena. Image
Image
3/ Robots are placed on the regolith in an orientation chosen randomly by the judges (so the robotic autonomy can’t be cheated).
Read 12 tweets
May 17
@bobster190 @DJSnM @WilliamShatner The paper has all the citations to other work inside it. I linked the paper because it wouldn’t make sense to duplicate that in a tweet. The paper wasn’t about Pluto. It was only about asteroids. We wrote a second paper that discusses Pluto and I think answers your objections. /1
@bobster190 @DJSnM @WilliamShatner 2/ That 2nd paper is here (no paywall so it is accessible):

It does discuss the arguments surrounding the IAU’s vote in 2006. I think we did a much better and more complete review of the issues than any other publication on the topic. Most other papers…sciencedirect.com/science/articl…
@bobster190 @DJSnM @WilliamShatner 3/ …include patently false information about why Pluto was voted down by the IAU. For example, the claim that asteroids were demoted because they share orbits is utterly nonsensical. Even a cursory review of the publication history shows this. Also the claim that the Moon…
Read 16 tweets
May 6
Here is something that hints strongly at how human scientists and engineers are already doomed by AI. 🧵

I noticed this tonight while using Grok for technical research. I asked it a complex question and Grok understood it completely and gave a sophisticated and highly believable answer, but when I asked for specific references so I can write it into a paper for a journal, none of the references Grok provided exactly support the answer it gave me. Instead, they hint at something deeper.

In this case, I am quantifying the loss of signal margin in a Moon-Earth communications link as a function of how many times you landed near the communication system so the rocket plume sandblasted the electronics' thermal coatings, causing them to operate hotter than designed. There is a real cost to sandblasting your hardware on the Moon, and I am trying to quantify it.

Grok gave me many quantified effects, including that the frequency oscillator will drift about 10 to 50 ppm per deg C of temperature rise outside its operating range and that the Signal to Noise Ratio of the overall communications link will drop about ~0.1–0.5 dB for small drifts (<10 kHz) in particular modulation schemes. This is a great result that I can use to quantify sandblasting damage on the Moon, and the result is totally plausible, but it doesn't appear in ANY reference that Grok provided. Nothing discusses this.

So I suspect Grok actually derived that relationship itself during the LLM training. I think the relationship is probably correct, because the many references hint around the edges of this relationship in the right magnitude. I think Grok noticed the patterns of many performance metrics including temperature, input power and frequency, outputs, etc., for many devices and how they are connected in typical systems, and it stored as a higher-level symbol the result that you get 10 to 50 ppm per deg C performance loss. I think it solved that during training as it sought the higher-order symbols to store everything it had learned. IOW, its learning process included a heckuva lot of valid inference on these technical issues, and it now knows more about the performance of communications equipment than even the published literature knows.

I asked Grok if this is true, and it says it is correct (screenshots).

/1Image
Image
2/ I then asked Grok to derive this relationship the same way it probably did during the LLM training, and it did. So now, if I want to use this key result in my paper, I have to use the many references that Grok used when it derived the relationship, and I have to show the derivation explicitly in the paper, or I can't publish it per the rules of scientific publishing (which of course were created in the days before reliable AI, and we still don't have totally reliable AI, but we can see it is coming fast).Image
3/ So here is the derivation, which it says replicates the process it did during its LLM training, which led it to believe in the quantified relationship between frequency shift and signal to noise ratio. I'm including this just to show its character. Image
Image
Image
Image
Read 4 tweets
Mar 14
I think it’s likely the Outer Space Treaty will be voided within the next few decades as nations will claim (effectively) national territory on the Moon and Mars.

Here’s why I think this…

/1 Image
2/
The OST is part of the International Rules-Based Order that emerged post-WW2. The IRBO was originally multipolar with the US-led NATO and Soviet-led Warsaw Pact. The collapse of the latter left the US as the main power wanting to keep the IRBO. China/the CCP hates this.
theguardian.com/world/2023/oct…Image
3/ The CCP claims the rules-based order was set up when China was weak so it is unfair and needs to be replaced. They are aggressive at claiming territory in their national interest, disregarding the existing rules-based order by rejecting rulings of the international court. lowyinstitute.org/the-interprete…
Read 10 tweets
Mar 5
I’d like to reemphasize this. The dust you see is not settling. It is still going uphill when it flies over the horizon and out of view. It is like a rocket that has curved below the horizon but is still climbing. If you get this, it makes sense why it clears the view so fast. /1
2/ It has so much grandeur when your mind can see it for what it is. It is not a humble cloud sinking to the ground. It is a vast, high energy phenomenon covering hundreds of kilometers in just a few seconds. In the vacuum of space nothing impedes its flight.
3/ I know some will object to the idea of regolith flying so fast that it escapes completely off the Moon, but the finest dust does. In fact, you can only see dust finer than about 1 micron in this video, and rocks bigger than a centimeter or so. >99% of the mass of the flying regolith is actually invisible in this video.
Read 5 tweets
Mar 4
This is superb! Will be a treasure for quantifying plume-surface interactions during lunar landing. There are some things I don't understand yet and will take a while to unpack. (Note: I'm not supporting the mission so this is just my private musing.) 🧵/1
2/ I don't understand three things about the shadows.
First, there is a huge upward flow up the centerline. The plume itself should be clear and invisible, since it cools as it leave the engine and without an atmosphere to collimate it the shock structures in the plume are... Image
3/ greatly reduced. So when I look at this, I think that central shadow up the center is not the plume but is dust, what we call "fountain flow". Now the lander has only one main engine, so if it was firing then there shouldn't be any fountain flow... Image
Read 40 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(