Lea Alhilali, MD Profile picture
Sep 19, 2022 19 tweets 7 min read Read on X
1/Need help reading spine imaging? I’ve got your back!
A #tweetorial about the ABCs of reading spine MRs & CTs.
#medtwitter #FOAMed #FOAMrad #medstudenttwitter #medstudent #neurorad #radres #neurosurgery #spine #orthopedics @medtweetorials @stefantigges Image
2/A is for alignment. Normal spinal alignment is perfectly in balance, resulting in the minimal energy needed for erect posture. Even subtle changes in alignment need compensatory changes to maintain posture, resulting in more work/energy expenditure & pain. Image
3/The goals for alignment on imaging: (1) look for unstable injuries & (2) look for malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine Image
4/B is for bones. On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not. On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle. Image
5/Assess the ligaments w/the bones. Unlike long bones, ligaments in the spine cover along the bones like saran wrap. Anterior longitudinal along the vertebral body front, posterior longitudinal along the vertebral body & posterior ligamentous complex along posterior elements Image
6/On CT, you can infer ligamentous injury from the alignment—if the space is too wide, the ligament can’t be intact. On MR you can see edema in the ligament (suspect ligamentous injury) or focal disruption (see the ligamentous injury) Image
7/C is for canal on CT & cord on MRI. On CT, look at canal contents for any large masses or collections that could compromise the canal. You won’t see it all, but you have to try. On MR, assessing the canal is easy. You can also see the cord itself to check for edema/injury Image
8/D is for discs or degenerative findings. Normal discs should look like a kidney on its side, with a little indentation in the middle just like the renal hilum. Any change to this reniform shape means that there is a disc bulge. Image
9/Normal discs also have a very distinctive appearance on sagittal imaging. You should see a T2 bright disc with a dark nucleus pulposus center. It looks like the cross section of a jelly filled donut Image
10/If you lose that jelly filled donut appearance, and the discs look flatter or darker without a definable center—more like flat pancakes than jelly donuts—then the disc is degenerated. Image
11/Several things can happen to a degenerated disc. First, you can get a bulge. I think of a bulge like gaining weight—you slowly get fatter & loosen your belt. For a disc, the annulus degenerates, gets looser & the disc gets a pot belly—so you lose the renal hilum indentation. Image
12/Next you can get a protrusion. If a bulge is loosening your belt (i.e., the annulus is more lax but still intact), a protrusion is like a hernia. The annulus suddenly tears and disc herniates out. This means it is more focal and can happen more acutely. Image
13/Next is an extrusion. Extrusion is when herniated disc become like toothpaste. B/c it’s squishy like toothpaste, an extrusion can move up or down away from the parent disc. Extrusion base can be smaller than the rest of it bc it can squish through small holes like toothpaste Image
14/Finally is a free fragment. This is when a piece of the extrusion breaks off from the rest of the disc—like when you break off some toothpaste onto your toothbrush. You can see this on imaging bc the fragment is usually a different signal than the parent disc—much T2 brighter Image
15/Besides the disc, you should also look at the facet joints. A normal facet joint looks like a hamburger. When the facet starts to look more like a mushroom than a hamburger, with overhanging osteophytes, that’s when I call it degenerated Image
16/In the c-spine, there are also uncovertebral joints. These are at the lateral vertebral body. Normally they should be smooth. On coronal images, they look like little devil horns. When they start to get osteophytes & look more like moose antlers, then they are degenerated. Image
17/So every spine dictation becomes formulaic, like a mad libs fill in the blank. Go through your ABCs and look for abnormalities in each. When you get to the D, if the study was done for degenerative changes, you should evaluate each level individually. Image
18/At each level, it is also a fill in the blank formulaic dictation. You should assess disc, facets, & possibly uncovertebral joints, looking for the signs we have talked about that show they are degenerated. Then you should say what they are doing to the canal & neural foramina Image
19/So now you know how to approach spine imaging studies in a systematic way—so that your dictations will have all the necessary elements to strike that perfect balance between enough detail and enough brevity. I told you I had your back! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Jun 9
1/Need help reading spine imaging? I’ve got your back!

It’s as easy as ABC!

A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing! Image
2/A is for alignment

Look for:
(1) Unstable injuries

(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine Image
3/B is for bones.

On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not

On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle Image
Read 11 tweets
Jun 6
1/Raise your hand if you’re confused by the BRACHIAL PLEXUS!

I could never seem to remember or understand it—but now I do & I’ll show you how!

A thread so you will never fear brachial plexus anatomy again! Image
2/Everyone has a mnemonic to remember brachial plexus anatomy.

I’m a radiologist, so I remember one about Rad Techs.

But just remembering the names & their order isn’t enough.

That is just the starting point--let’s really understand it Image
3/From the mnemonic, we start with the roots—the cervical nerve roots.

I remember which roots make up the brachial plexus by remembering that it supplies the hand.

You have 5 fingers on your hand so we start with C5 & we take 5 nerve roots (C5-T1). Image
Read 20 tweets
Jun 4
1/Having trouble remembering what to look for in vascular dementia on imaging?

Almost everyone w/memory loss has infarcts. Which are important?

The latest @theajnr SCANtastic has what you need to know:

ajnr.org/content/46/5/1…Image
@TheAJNR 2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.

It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia Image
@TheAJNR 3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.

It’s possible to lose little volume from infarct & still result in dementia.

So if infarcts are common—which contribute to vascular dementia? Image
Read 20 tweets
Jun 2
1/Having trouble remembering how to differentiate dementias on imaging?

Is looking at dementia PET scans one of your PET peeves?

Here’s a thread to show you how to remember the imaging findings in dementia & never forget! Image
2/The most common functional imaging used in dementia is FDG PET. And the most common dementia is Alzheimer’s disease (AD).

On PET, AD demonstrates a typical Nike swoosh pattern—with decreased metabolism in the parietal & temporal regions Image
3/The swoosh rapidly tapers anteriorly—& so does hypometabolism in AD in the temporal lobe. It usually spares the anterior temporal poles.

So in AD look for a rapidly tapering Nike swoosh, w/hypometabolism in the parietal/temporal regions—sparing the anterior temporal pole Image
Read 16 tweets
May 27
1/Feel perplexed by the lumbosacral plexus??

This plexus doesn’t have to be so complex-us

Here’s what you need to know from this month’s @Radiographics!



@cookyscan1 @RadG_editor doi.org/10.1148/rg.240…Image
@RadioGraphics @cookyscan1 @RadG_Editor 2/The lumbosacral plexus is like a love story

The lumbar & sacral plexuses met & fell in love

They loved each other so much they came together to create the nerves to the lower extremities! Image
@RadioGraphics @cookyscan1 @RadG_Editor 3/Lumbosacral plexus is essentially formed by the nerves from L1-S4 (with some other small contributions)

Remember this bc the plexus is to the lower extremitieis and L & 1 look legs and S & 4 look like feet! Image
Read 12 tweets
May 6
1/Have disagreements between radiologists on the degree of cervical canal stenosis become a pain in the neck?

Worried about sticking your neck out & calling severe cervical stenosis?

This month’s @theAJNR SCANtastic has the latest about Cspine MRI!

ajnr.org/content/46/4/7…Image
@TheAJNR 2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots.

In the cervical spine, we have another factor to think about—the cord.

Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either Image
@TheAJNR 3/Cord flattening, even w/o canal stenosis, can cause myelopathy.

No one is quite sure why.

Some say it’s b/c mass effect on static imaging may be much worse dynamically, some say repetitive microtrauma, & some say micro-ischemia from compression of perforators Image
Read 16 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(