1/ This new Webb picture of the month shows IC 1623, a pair of interacting galaxies, plunging into one another. Their collision has ignited a spate of star formation creating new stars at a rate above 20 times that of the Milky Way. Read more 👉 esawebb.org/images/potm221… and 👇
2/ Astronomers used Webb's #MIRI, #NIRSpec, and #NIRCam instruments to investigate IC 1623. This will allow scientists to unravel the interactions in galactic ecosystems. These observations are also accompanied by data from other observatories, like @HUBBLE_space#BFFinSpace
@HUBBLE_space 3/ The luminous core of this merger is very bright and highly compact, so much so that Webb’s diffraction spikes appear atop the galaxy in this image. The 8-pronged diffraction spikes are created by the interaction of starlight with the physical structure of the telescope.
1/ Webb turns its eye close to home by capturing its first image of Neptune, revealing the ice giant planet in a whole new light. This is the clearest view of this peculiar planet’s rings in more than 30 years. Read more:
2/ The new image, taken by Webb’s Near-Infrared Camera (NIRCam), shows the crisp view of the planet’s dynamic rings. The Webb images also clearly show Neptune’s fainter dust bands.
3/ Methane gas found inside Neptune is so strongly absorbing that the planet is quite dark at Webb wavelengths (0.6 to 5 microns) except where high-altitude clouds are present. Such clouds are prominent as bright streaks and spots, which reflect sunlight.
1/ Webb has captured its first infrared spectrum of Mars
🔴, providing a unique perspective on our neighbouring planet, that compliments data collected by orbiters, rovers, and other telescopes. Read more: esawebb.org/images/first-o…
2/ This near-infrared spectrum of Mars was captured by NIRSpec on 5 September 2022. The spectrum is dominated by reflected sunlight at wavelengths shorter than 3 microns and thermal emission at longer wavelengths.
3/ The spectral dips appear at specific wavelengths where light is absorbed by molecules in Mars’ atmosphere, specifically carbon dioxide, carbon monoxide, and water. Analysis of the spectrum can tell scientists about the abundance of these molecules.
This detailed new image taken by #Webb peers into the chaos of the Cartwheel Galaxy 🛞 The image unveils secrets about star formation ✨ & the galaxy’s central black hole, providing new insights into a galaxy in the midst of a slow transformation 👇
The Cartwheel Galaxy, located about 500 million light-years away in the Sculptor constellation, looks much like the wheel of a wagon. Its appearance results from a high-speed collision between a large spiral galaxy and a second smaller galaxy 👇
Telescopes like @HUBBLE_space have previously examined the Cartwheel, but our view of the galaxy has been obscured by gas and dust 😶🌫️ Webb, with its infrared imaging capabilities, has now uncovered new insights into the galaxy’s nature 👇
What you see here is a transmission spectrum made from a single observation using Webb’s NIRISS instrument. Let's take a closer look at it 👇
A transmission spectrum is made by comparing starlight filtered through a planet’s atmosphere as it moves across the star, to the unfiltered starlight detected when the planet is beside the star 👇
🔴 Each of the 141 data points (white circles) on this graph represents the amount of a specific wavelength of light that is blocked by the planet and absorbed by its atmosphere 👇
📢 #Webb reveals cosmic cliffs & glittering landscape of star birth, showing us emerging stellar nurseries & individual stars that were previously obscured. This is the edge of nearby star-forming region NGC 3324 in the Carina Nebula. Read more here: esawebb.org/news/weic2205/ or👇
Called the Cosmic Cliffs, Webb’s seemingly 3D picture looks like craggy mountains on a moonlit evening. In reality, it is the edge of the giant, gaseous cavity within NGC 3324, and the tallest “peaks” in this image are about 58 light-years high 👇
The cavernous area has been carved from the nebula by the intense ultraviolet radiation and stellar winds from extremely massive, hot, young stars located in the centre of the bubble, above the area shown in the image 👇
📢 #Webb reveals never-before-seen details of galaxy group “Stephan’s Quintet”, giving astronomers a ringside seat to galactic mergers and interactions. Read more here: esawebb.org/news/weic2208/ or below 👇
Stephan’s Quintet is a visual grouping of 5 galaxies with only 4 of the galaxies truly close together & caught up in a cosmic dance — a fantastic “laboratory” for scientists to see in detail how interacting galaxies trigger star formation & how gas is being disturbed 👇
Tight groups like this may have been more common in the early universe when their infalling material may have fuelled very energetic black holes. Even today, the topmost galaxy harbours an active galactic nucleus, a supermassive black hole 24 million times the mass of the Sun 👇