Tivadar Danka Profile picture
Dec 29, 2022 15 tweets 5 min read Read on X
This stone tablet from 1800-1600 BC shows that ancient Babylonians were able to approximate the square root of two with 99.9999% accuracy.

How did they do it?
First, let’s decipher the tablet itself. It is called YBC 7289 (short for the 7289th item in the Yale Babylonian Collection), and it depicts a square, its diagonal, and numbers written around them.

Here is a stylized version.
As the Pythagorean theorem implies, the diagonal’s length for a unit square is √2. Let’s focus on the symbols there!

These are numbers, written in Babylonian cuneiform numerals. They read as 1, 24, 51, and 10.
Since the Babylonians used the base 60 numeral system (also known as sexagesimal), the number 1.24 51 10 reads as 1.41421296296 in decimal.
This matches √2 up to the sixth digit, meaning a 99.9999% accuracy!
The computational accuracy is stunning. To appreciate this, pick up a pen and try to reproduce this without a calculator. It’s not that easy!

Here is how the ancient Babylonians did it.
We start by picking a number x₀ between 1 and √2. I know, this feels random, but let’s just roll with it for now. One such example is 1.2, which is going to be our first approximation.
Because of this, 2/x₀ is larger than √2.
Thus, the interval [x₀, 2/x₀] envelopes √2.

From this, it follows that the mid-point of the interval [x₀, 2/x₀] is a better approximation to √2. As you can see in the figure below, this is significantly better!

Let's define x₁ by this.
Continuing on this thread, we can define an approximating sequence by taking the midpoints of such intervals.
Here are the first few terms of the sequence. Even the third member is a surprisingly good approximation.
If we put these numbers on a scatterplot, we practically need a microscope to tell the difference from √2 after a few steps.
Were the Babylonians just lucky, or did they hit the nail right on the head?

The latter one. If you are interested in the details, check out the full version of the post here: thepalindrome.substack.com/p/how-did-the-…
If you have enjoyed this explanation, share it with your friends and give me a follow! I regularly post deep-dive explainers such as this.
One more thing. The YBC 7289 tablet is actually clay, not stone.

This is my secret engagement tactic: I plant a simple error, then let others point it out.

(Just kidding. Seriously though, I always let a silly mistake through the cracks accidentally.)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Sep 11
Logistic regression is one of the simplest models in machine learning, and one of the most revealing.

It shows how to move from geometric intuition to probabilistic reasoning. Mastering it sets the foundation for everything else.

Let’s dissect it step by step! Image
Let’s start with the most basic setup possible: one feature, two classes.

You’re predicting if a student passes or fails based on hours studied.

Your input x is a number, and your output y is either 0 or 1.

Let's build a predictive model! Image
We need a model that outputs values between 0 and 1.

Enter the sigmoid function: σ(ax + b).

If σ(ax + b) > 0.5, we predict pass (1).

Otherwise, fail (0).

It’s a clean way to represent uncertainty with math. Image
Read 15 tweets
Sep 8
Matrix multiplication is not easy to understand.

Even looking at the definition used to make me sweat, let alone trying to comprehend the pattern. Yet, there is a stunningly simple explanation behind it.

Let's pull back the curtain! Image
First, the raw definition.

This is how the product of A and B is given. Not the easiest (or most pleasant) to look at.

We are going to unwrap this. Image
Here is a quick visualization before the technical details.

The element in the i-th row and j-th column of AB is the dot product of A's i-th row and B's j-th column. Image
Read 16 tweets
Sep 7
Behold one of the mightiest tools in mathematics: the camel principle.

I am dead serious. Deep down, this tiny rule is the cog in many methods. Ones that you use every day.

Here is what it is, how it works, and why it is essential: Image
First, the story:

The old Arab passes away, leaving half of his fortune to his eldest son, third to his middle son, and ninth to his smallest.

Upon opening the stable, they realize that the old man had 17 camels. Image
This is a problem, as they cannot split 17 camels into 1/2, 1/3, and 1/9 without cutting some in half.

So, they turn to the wise neighbor for advice. Image
Read 18 tweets
Sep 7
The way you think about the exponential function is wrong.

Don't think so? I'll convince you. Did you realize that multiplying e by itself π times doesn't make sense?

Here is what's really behind the most important function of all time: Image
First things first: terminologies.

The expression aᵇ is read "a raised to the power of b."

(Or a to the b in short.) Image
The number a is called the base, and b is called the exponent.

Let's start with the basics: positive integer exponents. By definition, aⁿ is the repeated multiplication of a by itself n times.

Sounds simple enough. Image
Read 18 tweets
Sep 5
In machine learning, we use the dot product every day.

However, its definition is far from revealing. For instance, what does it have to do with similarity?

There is a beautiful geometric explanation behind: Image
By definition, the dot product (or inner product) of two vectors is defined by the sum of coordinate products. Image
To peek behind the curtain, there are three key properties that we have to understand.

First, the dot product is linear in both variables. This property is called bilinearity. Image
Read 16 tweets
Sep 5
The single biggest argument about statistics: is probability frequentist or Bayesian?

It's neither, and I'll explain why.

Deep-dive explanation incoming: Image
First, let's look at what probability is.

Probability quantitatively measures the likelihood of events, like rolling six with a die. It's a number between zero and one.

This is independent of interpretation; it’s a rule set in stone. Image
In the language of probability theory, the events are formalized by sets within an event space.

The event space is also a set, usually denoted by Ω.) Image
Read 34 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(