Tivadar Danka Profile picture
Dec 29, 2022 15 tweets 5 min read Read on X
This stone tablet from 1800-1600 BC shows that ancient Babylonians were able to approximate the square root of two with 99.9999% accuracy.

How did they do it?
First, let’s decipher the tablet itself. It is called YBC 7289 (short for the 7289th item in the Yale Babylonian Collection), and it depicts a square, its diagonal, and numbers written around them.

Here is a stylized version.
As the Pythagorean theorem implies, the diagonal’s length for a unit square is √2. Let’s focus on the symbols there!

These are numbers, written in Babylonian cuneiform numerals. They read as 1, 24, 51, and 10.
Since the Babylonians used the base 60 numeral system (also known as sexagesimal), the number 1.24 51 10 reads as 1.41421296296 in decimal.
This matches √2 up to the sixth digit, meaning a 99.9999% accuracy!
The computational accuracy is stunning. To appreciate this, pick up a pen and try to reproduce this without a calculator. It’s not that easy!

Here is how the ancient Babylonians did it.
We start by picking a number x₀ between 1 and √2. I know, this feels random, but let’s just roll with it for now. One such example is 1.2, which is going to be our first approximation.
Because of this, 2/x₀ is larger than √2.
Thus, the interval [x₀, 2/x₀] envelopes √2.

From this, it follows that the mid-point of the interval [x₀, 2/x₀] is a better approximation to √2. As you can see in the figure below, this is significantly better!

Let's define x₁ by this.
Continuing on this thread, we can define an approximating sequence by taking the midpoints of such intervals.
Here are the first few terms of the sequence. Even the third member is a surprisingly good approximation.
If we put these numbers on a scatterplot, we practically need a microscope to tell the difference from √2 after a few steps.
Were the Babylonians just lucky, or did they hit the nail right on the head?

The latter one. If you are interested in the details, check out the full version of the post here: thepalindrome.substack.com/p/how-did-the-…
If you have enjoyed this explanation, share it with your friends and give me a follow! I regularly post deep-dive explainers such as this.
One more thing. The YBC 7289 tablet is actually clay, not stone.

This is my secret engagement tactic: I plant a simple error, then let others point it out.

(Just kidding. Seriously though, I always let a silly mistake through the cracks accidentally.)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Aug 23
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why: Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Aug 22
The most important concept in probability and statistics: the expected value

For instance, all the popular loss functions in machine learning, like cross-entropy, are expected values. However, its definition is far from intuitive.

Here is what's behind the scenes: Image
It's better to start with an example.

So, let's play a simple game! The rules: I’ll toss a coin, and if it comes up heads, you win $1. However, if it is tails, you lose $2.

Should you even play this game with me? We’ll find out.
After n rounds, your earnings can be calculated by the number of heads times $1 minus the number of tails times $2.

If we divide total earnings by n, we obtain your average earnings per round. Image
Read 16 tweets
Aug 21
Adding numbers is more exciting than you think.

For instance, summing the same alternating sequence of 1s and (-1)s can either be zero or one, depending on how we group the terms. What's wrong?

I'll explain. Enter the beautiful world of infinite series: Image
Let’s go back to square one: the sum of infinitely many terms is called an infinite series. (Or series in short.)

Infinite series form the foundations of mathematics. Image
Do infinite series make sense? Sure.

Take a look at the geometric series: summing the positive powers of 1/2 adds up to one.

Here is a visual proof to convince you. Image
Read 24 tweets
Aug 20
The main reason math is considered difficult: proofs.

Reading and writing proofs are hard, but you cannot get away without them. The best way to learn is to do.

So, let's deconstruct the proof of the most famous mathematical result: the Pythagorean theorem. Image
Here it is in its full glory.

Theorem. (The Pythagorean theorem.) Let ABC be a right triangle, let a and b be the lengths of its two legs, and let c be the length of its hypotenuse.

Then a² + b² = c². Image
Now, the proof. Mathematical proofs often feel like pulling a rabbit out of a hat. I’ll go a bit overboard and start by pulling out two rabbits.

The first rabbit. Take a look at the following picture.

The depicted square’s side is a + b long, so its area is (a + b)². Image
Read 18 tweets
Aug 19
One of my favorite formulas is the closed-form of the geometric series.

I am amazed by its ubiquity: whether we are solving basic problems or pushing the boundaries of science, the geometric series often makes an appearance.

Here is how to derive it from first principles: Image
Let’s start with the basics: like any other series, the geometric series is the limit of its partial sums.

Our task is to find that limit. Image
There is an issue: the number of terms depends on N.

Thus, we can’t take the limit term by term. Image
Read 12 tweets
Aug 16
Problem-solving is at least 50% of every job in tech and science.

Mastering problem-solving will make your technical skill level shoot up like a hockey stick. Yet, we are rarely taught how to do so.

Here are my favorite techniques that'll loosen even the most complex knots: Image
0. Is the problem solved yet?

The simplest way to solve a problem is to look for the solution elsewhere.

This is not cheating; this is pragmatism. (Except if it is a practice problem. Then, it is cheating.)
When your objective is to move fast, this should be the first thing you attempt.

This is the reason why Stack Overflow (yeah, I'm old-school) is the best friend of every programmer.
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(