Tivadar Danka Profile picture
Dec 29, 2022 15 tweets 5 min read Read on X
This stone tablet from 1800-1600 BC shows that ancient Babylonians were able to approximate the square root of two with 99.9999% accuracy.

How did they do it?
First, let’s decipher the tablet itself. It is called YBC 7289 (short for the 7289th item in the Yale Babylonian Collection), and it depicts a square, its diagonal, and numbers written around them.

Here is a stylized version.
As the Pythagorean theorem implies, the diagonal’s length for a unit square is √2. Let’s focus on the symbols there!

These are numbers, written in Babylonian cuneiform numerals. They read as 1, 24, 51, and 10.
Since the Babylonians used the base 60 numeral system (also known as sexagesimal), the number 1.24 51 10 reads as 1.41421296296 in decimal.
This matches √2 up to the sixth digit, meaning a 99.9999% accuracy!
The computational accuracy is stunning. To appreciate this, pick up a pen and try to reproduce this without a calculator. It’s not that easy!

Here is how the ancient Babylonians did it.
We start by picking a number x₀ between 1 and √2. I know, this feels random, but let’s just roll with it for now. One such example is 1.2, which is going to be our first approximation.
Because of this, 2/x₀ is larger than √2.
Thus, the interval [x₀, 2/x₀] envelopes √2.

From this, it follows that the mid-point of the interval [x₀, 2/x₀] is a better approximation to √2. As you can see in the figure below, this is significantly better!

Let's define x₁ by this.
Continuing on this thread, we can define an approximating sequence by taking the midpoints of such intervals.
Here are the first few terms of the sequence. Even the third member is a surprisingly good approximation.
If we put these numbers on a scatterplot, we practically need a microscope to tell the difference from √2 after a few steps.
Were the Babylonians just lucky, or did they hit the nail right on the head?

The latter one. If you are interested in the details, check out the full version of the post here: thepalindrome.substack.com/p/how-did-the-…
If you have enjoyed this explanation, share it with your friends and give me a follow! I regularly post deep-dive explainers such as this.
One more thing. The YBC 7289 tablet is actually clay, not stone.

This is my secret engagement tactic: I plant a simple error, then let others point it out.

(Just kidding. Seriously though, I always let a silly mistake through the cracks accidentally.)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Tivadar Danka

Tivadar Danka Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @TivadarDanka

Jul 1
The single most undervalued fact of linear algebra: matrices are graphs, and graphs are matrices.

Encoding matrices as graphs is a cheat code, making complex behavior simple to study.

Let me show you how! Image
If you looked at the example above, you probably figured out the rule.

Each row is a node, and each element represents a directed and weighted edge. Edges of zero elements are omitted.

The element in the 𝑖-th row and 𝑗-th column corresponds to an edge going from 𝑖 to 𝑗.
To unwrap the definition a bit, let's check the first row, which corresponds to the edges outgoing from the first node. Image
Read 18 tweets
Jun 30
In calculus, going from a single variable to millions of variables is hard.

Understanding the three main types of functions helps make sense of multivariable calculus.

Surprisingly, they share a deep connection. Let's see why! Image
In general, a function assigns elements of one set to another.

This is too abstract for most engineering applications. Let's zoom in a little! Image
As our measurements are often real numbers, we prefer functions that operate on real vectors or scalars.

There are three categories:

1. vector-scalar,
2. vector-vector,
3. and scalar-vector. Image
Read 16 tweets
Jun 30
Neural networks are stunningly powerful.

This is old news: deep learning is state-of-the-art in many fields, like computer vision and natural language processing. (But not everywhere.)

Why are neural networks so effective? I'll explain. Image
First, let's formulate the classical supervised learning task!

Suppose that we have a dataset D, where xₖ is a data point and yₖ is the ground truth. Image
The task is simply to find a function g(x) for which

• g(xₖ) is approximately yₖ,
• and g(x) is computationally feasible.

To achieve this, we fix a parametrized family of functions. For instance, linear regression uses this function family: Image
Read 19 tweets
Jun 28
One major reason why mathematics is considered difficult: proofs.

Reading and writing proofs are hard, but you cannot get away without them. The best way to learn is to do.

So, let's deconstruct the proof of the most famous mathematical result: the Pythagorean theorem. Image
Here it is in its full glory.

Theorem. (The Pythagorean theorem.) Let ABC be a right triangle, let a and b be the length of its two legs, and let c be the length of its hypotenuse.

Then a² + b² = c². Image
Now, the proof. Mathematical proofs often feel like pulling a rabbit out of a hat. I’ll go a bit overboard and start by pulling out two rabbits.

The first rabbit. Take a look at the following picture.

The depicted square’s side is a + b long, so its area is (a + b)². Image
Read 19 tweets
Jun 26
Problem-solving is at least 50% of every job in tech and science.

Mastering problem-solving will make your technical skill level shoot up like a hockey stick. Yet, we are rarely taught how to do so.

Here are my favorite techniques that'll loosen even the most complex knots: Image
0. Is the problem solved yet?

The simplest way to solve a problem is to look for the solution elsewhere. This is not cheating; this is pragmatism. (Except if it is a practice problem. Then, it is cheating.)
When your objective is to move fast, this should be the first thing you attempt.

This is the reason why Stack Overflow (and its likes) are the best friends of every programmer.
Read 18 tweets
Jun 25
What you see below is one of the most beautiful formulas in mathematics.

A single equation, establishing a relation between 𝑒, π, the imaginary number, and 1. It is mind-blowing.

This is what's behind the sorcery: Image
First, let's go back to square one: differentiation.

The derivative of a function at a given point describes the slope of its tangent plane. Image
By definition, the derivative is the limit of difference quotients: slopes of line segments that get closer and closer to the tangent.

These quantities are called "difference quotients". Image
Read 20 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(