One of the clearest cases for "integration" is in combining measurements of nascent and mature mRNAs, which can be obtained with every #scRNAseq experiment. Should "intronic counts" be added to "exonic counts"? Or is it better to pick one or the other?
This important question has been swept under the rug. Perhaps that is because it is inconvenient to have to rethink #scRNAseq with two count matrices as input, instead of one. How does one cluster with two matrices? How does one find marker genes with them? 3/
One approach could be to adapt a method such as totalVI (@adamgayoso et al.), which is an integration method built on scVI for CITE-seq data. nature.com/articles/s4159…
Such a method could take as input two matrices, but would not utilize the biological relationship between them. 4/
There is a way. Figure 1 of our preprint summarizes the idea. But first let's talk about adapting scVI to work like totalVI, except for nascent and mature mRNA counts. This is what is shown in panel (a) of our Figure 1. 5/.
"Generative" means that scVI learns (via a neural network) parameters for negative binomial distributions modeling gene counts. This is useful in practice (see nature.com/articles/s4158…) however the use of negative binomial distributions reflects a supposition about the data. 6/
The supposition is absent a mechanistic rationale, i.e. there is no interpretation to the negative binomial distributions, the merely label a black box. One may not care to make the black box transparent, though giving it meaning is necessary for "integration". But how? 7/
@GorinGennady has been thinking about the bursty model of transcription and how it relates #scRNAseq data for several years (see, e.g. sciencedirect.com/science/articl…). His idea was to use a variational autoencoder to parameterize distributions arising from a CME. 8/
The model we used in depicted in panel (b). A telegraph model driving bursty transcription generates nascent mRNAs that are processed and subsequently degraded. 9/
This brings us to biVI, shown in panel (c). We replace estimates of negative binomial parameters for each gene, with mechanistically motivated parameters based on the model described in panel (b). The scVI black box is now an interpretable, open, transparent box. 9/
The math underlying this method is not easy, and requires solving the chemical master equation for a non-trivial model. We did this using another neural network (RHS of panel b). This neural network takes as input parameters and outputs steady state distributions. 10/
In fact, the biVI application motivated the neural network CME solver. We believe it will find many other applications. 11/
To validate our implementation we first tested it on simulated data, where the sim is not just of counts matching a distribution, but a mechanistic sim of nascent and mature mRNAs. The "sanity check" worked well. biVI is much better at recovering the ground truth than scVI. 12/
Notably, "scVI" here is the adaptation of totalVI framework to work with two count matrices. I.e., to be fair, we are feeding scVI both matrices. Current common practice is to use scVI with one count matrix. Even so, while scVI performed reasonably, it's better to use biVI. 13/
What about biological data? We ran biVI on the BICCN primary motor cortex data that we analyzed in a publication last year, i.e. @sinabooeshaghi et al.: nature.com/articles/s4158….
14/
The information biVI outputs is interesting on several levels. Our Fig. 3 shows that distinct cell types are separated by the inferred parameters, and that novel markers can be detected (that are blind to an analysis even with two matrices, but that is not mechanistic). 15/
The repository contains the code for biVI, and also notebooks to generate the figures and results in the preprint. 16/
Note that in addition to implementing the bursty model, we also implemented the constitutive model, and an "extrinsic model" which production rates are random (from a Gamma distribution). 17/
In summary, we propose an answer to how one should use "intronic" and "exonic" counts together in a #scRNAseq analysis. There is much more to do: biVI can be extended to include a linear decoder for interpretability of the latent space, as in LDVAE academic.oup.com/bioinformatics… 18/
The underlying mechanistic model can be extended to account for different technical artifacts, as well as to include other modalities, for example protein quantifications as in totalVI. @MariaCarilli will be pursuing these ideas in the future. 19/
So this plagiarism thing has happened to our lab.. again. This time it's plagiarism of our poseidon syringe pump paper @booeshaghi et al., 2019 in @SciReports:
Text has been plagiarized, as well as figures copied directly here: 1/🧵nature.com/articles/s4159… ijirset.com/upload/2024/ma…
Here is figure 1 from our paper (LHS) and figure 1 in the plagiarized paper (RHS) published in the "International Journal of Innovative Research" 2/ ijirset.com/upload/2024/ma…
The text seems to have been rewritten with an LLM. Our introduction (LHS) vs. the plagiarized version (RHS): 3/
I've checked this paper out, as instructed. I was also interested in the main result for personal reasons: I'm 51 years old. Is it true that I've just gone through a major change? And that another one awaits me in just a few years?
The main result about major changes in the mid 40s and 60s is shown in this plot (Fig. 4a). First, I redrew it with axes that start at 0, so the scale of change here was clearer. Not as impressive, but maybe it's a thing? 2/
The authors say that this finding is even corroborated in another study (ref 14). But that's not true. I looked it up, and it shows something totally different (see RHS Fig 3c from ref 14). No change in mid 40s, but a change in the mid 30s, and the real change in the 80s 😕 3/
I recently posted on @bound_to_love's work quantifying long-read RNA-seq. In response, a scientist acting in bad faith (Rob Patro @nomad421) trashed our work. This kind of mold in science's bathroom is extremely damaging so here's a bit of bleach. 1/🧵
At issue are benchmarking results we performed comparing our tool, lr-kallisto, to other programs including Patro's Oarfish. Shortly after we posted our preprint Patro started subtweeting our work, claiming we'd run an "appallingly wrong benchmark" and that we're "bullies". 2/
This was followed, within days, by Patro posting a hastily written preprint disguised as research work on benchmarking, but really just misusing @biorxivpreprint to broadcast the lie that our work "... may be repeatable, but it appears neither replicable nor reproducible." 3/
This recently published figure by @Sarah_E_Ancheta et al. is very disturbing and should lead to some deep introspection in the single-cell genomics community (I doubt it will).
It demonstrates complete disagreement among 5 widely used "RNA velocity" methods 1/
This is of course no surprise. In "RNA velocity unraveled" by @GorinGennady et al. in @PLOSCompBiol we wrote 55 page paper explaining the many ways in which RNA velocity makes no sense. 2/ journals.plos.org/ploscompbiol/a…
We're not the only ones to understand how flawed RNA velocity is. The paper from the groups of @KasperDHansen and @loyalgoff is titled "pumping the brakes on RNA velocity". The whole notion of putting arrows on UMAPs is ridiculous. 3/genomebiology.biomedcentral.com/articles/10.11…
Challenge accepted. Here are a few comments on the paper after starting to wade through its massive content. The paper in question is 1/🧵 nature.com/articles/s4158…
First, the claim that "lower OPC fraction across regions and, in particular, in non-neocortex regions was significantly associated with impaired cognition (Supplementary Fig. 37d)" is not true. Supp. Fig. 37d is below. I've boxed in red the panel the claim is based on. 2/
The R^2 value, i.e. proportion of variance explained is 0.0256. The "significance" claim is based on the reported p-value of 0.0071 which is less than 0.05. However significance vanishes once one corrects for the number of tests performed. 3/