4/If we want to know how fast something is traveling—be it blood or a whale—we need a way to keep track of it. We need to TAG it
For whales, they literally shoot a tag into a whale to keep track of it. They track the tagged whale to see how fast the whole herd is moving #RGPhx
5/Tagging is important, especially if you’re trying to keep track of 1 whale in a sea of whales
Same w/blood. If you’re trying to track how fast blood is flowing, you need to make sure you’re tracking the same blood the whole time—otherwise you get lost in a sea of blood #RGPhx
6/So since we can’t harpoon blood—how do we tag it?
We can do it w/magnetization. We essentially zap some of the blood w/a radiofrequency pulse.
This changes the magnetic properties of the blood we zap—making them different or TAGGED compared to the rest of the blood #RGPhx
7/It’s like in “Spiderman.” Being bitten by a radioactive spider transformed Peter Parker into something different than everyone else—Spiderman
The spider “tagged” him
Same w/blood. It’s “bitten” by a radiofrequency pulse & becomes different from the remaining blood #RGPhx
8/Tagged blood is like a dye to track blood flow
It’s like finding river velocity w/dye
Tagging blood is like dropping dye at a start line. You wait a minute & then check how much dye got to the finish
You know distance & time, so that gives you river (blood) velocity. #RGPhx
9/This is what we do in ASL
We tag blood at the start line (in the neck), then wait a little bit, & then check how much dyed/tagged blood made it to the finish line (the head)
This gives cerebral blood flow or CBF. CBF is the only perfusion parameter ASL can measure #RGPhx
10/Sadly, ASL has poor signal to noise
Tagging blood in our vessels isn’t like dropping dye into a canal—it’s dropping it in a mountain river
Dye gets diluted by other contributing streams & also washes out into other vessels, so very little actually gets to the brain #RGPhx
11/To increase signal to noise, we subtract out the background
We take a background image w/no tagged blood & subtract it from the image w/tagged blood
This way, background noise is subtracted out & only tagged blood signal remains--like digital subtraction angiography #RGPhx
12/Tagging blood is like dyeing water. How do we pour in the dye?
We can be like a little kid & pour all our dye into the river at once
Or we can be like an adult & patiently distribute it over time—like pouring small glasses of koolaid to serve all the kids at a party. #RGPhx
13/Going from the neck to the head is like running a marathon for blood
Pouring all the dye in at once is like all-out sprinting the start of a marathon—you’ll get drained
Tagging blood all at once is called continuous ASL. It runs out of steam & has poor signal to noise #RGPhx
14/Instead of all-out sprinting, you could save your energy. Run a little, rest a little, run a little
This surely gives more endurance—you won’t exhaust yourself, but you won’t be fast
This is pulsed ASL—tagging in short bursts. Good signal to noise, but not efficient #RGPhx
15/Let’s combine the two approaches.
All out sprint for a bit, but also take a short rest before all out sprinting again. This way, you have speed & endurance.
This is pseudocontinous ASL—tag for long periods but take a break in between. It’s best for SNR & efficiency #RGPhx
16/Best way to run a marathon is to go hard as long as you can, but also have short rests so you don’t exhaust yourself (pseudocontinuous running).
Same w/ASL. Best way to tag blood is to tag for a long period of time & take small breaks. This is pseudocontinous ASL. #RGPhx
17/So remember—you don’t need contrast for perfusion! ASL can transform blood into a superhero that doesn’t need contrast!
If you don’t know the time of stroke onset, are you able to deduce it from imaging?
Here’s a thread to help you date a stroke on MRI!
2/Strokes evolve, or grow old, the same way people evolve or grow old.
The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person
So 15 day old stroke has features of a 15 year old person, etc.
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI).
You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted. So early/newly born stroke is like a baby, only restricted
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.
Do you become paralyzed when you see cord signal abnormality?
Never fear—here is a thread on all the incomplete spinal cord syndromes to get you moving again!
2/Spinal cord anatomy can be complex. On imaging, we can see the ant & post nerve roots. We can also see the gray & white matter. Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin.
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts. Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor
1/Do you get a Broca’s aphasia trying remember the location of Broca's area?
Does trying to remember inferior frontal gyrus anatomy leave you speechless?
Don't be at a loss for words when it comes to Broca's area
Here’s a 🧵to help you remember the anatomy of this key region!
2/Anatomy of the inferior frontal gyrus (IFG) is best seen on the sagittal images, where it looks like the McDonald’s arches.
So, to find this area on MR, I open the sagittal images & scroll until I see the arches. When it comes to this method of finding the IFG, i’m lovin it.
3/Inferior frontal gyrus also looks like a sideways 3, if you prefer. This 3 is helpful bc the inferior frontal gyrus has 3 parts—called pars
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle