Lea Alhilali, MD Profile picture
Feb 16, 2023 17 tweets 6 min read Read on X
1/Your baby’s all grown up! Cerebellum may mean “little cerebrum” but its jobs are anything but little

Do you know cerebellar anatomy beyond vermis & hemispheres?

Here’s a #tweetorial about the functional #anatomy of the cerebellum!
#medtwitter #neurotwitter #neurorad #meded Image
2/Cerebellum means “little cerebrum” or “little brain” bc it looks like a mini brain--a mini me to the cerebrum one might say.

However, it does not play a mini role. In fact, despite being significantly smaller than the cerebrum, it contains as many neurons as the cerebrum
3/When most people think of cerebellar function, they think of balance. And the first thing that comes to mind with cerebellar dysfunction is imbalance & dizziness.

However, the cerebellum is involved in much more, including cognitive functions
4/The cerebellum is divided into anterior & posterior lobes by the primary fissure. Then, along its undersurface is the flocculonodular lobe.

I think this anatomy looks like a dog with his tongue sticking out—the tongue being the flocculonodular lobe
5/Cerebellum has a homunculus. In fact, it has 2!

It has a primary homunculus in along the top of the anterior lobe & a secondary homunculus along the bottom of the posterior lobe—like a reflection of the primary homunculus along the bottom of the cerebellum
6/Cerebellar homunculus looks like 2 gymnasts spread over the top and bottom of the cerebellum.

You have to picture their arms going out laterally, because the homunculus of the cerebellum also spreads out from midline.
7/How to remember which way the gymnasts are facing?

Well, just like the homunculus in the cerebrum, the feet/legs hang over the edge.

So the feet of the cerebellar homunculus are dangling over the edge towards the fourth ventricle
8/Cerebellum is involved in a variety of functions. The functional regions are organized in a gradient.

Most medial regions are for sensory, slightly more lateral for motor, & finally most lateral is for cognitive functions. Bet you didn’t know your little brain was thinking!
9/This distribution actually reflects the evolution of the cerebellum.

As species evolved & the frontal cortex/cognitive functions became more pronounced, the lateral hemispheres of the cerebellum enlarged too—helping to serve these new cognitive functions
10/You can remember this distribution by thinking of the midline as home.

For sensory, you can only sense things close by (touch close by things, see things only in your line of sight).

Thus, sensory doesn’t take you far from home—you have to stay close (medial)
11/With motor functions (ie, walking, running), you can get a little bit away from home. You can run away—but you don’t get too far. There is only so far you can run!

So motor functions are slightly removed from midline
12/Finally is cognitive. With your mind, you can transport yourself anywhere—you can dream of places very far away from home.

So cognitive functions are the farthest removed from home—they are the most lateral
13/This gradient of sensorimotor function being more medial & cognitive functions being more lateral persists for the deep cerebellar nuclei.

There are three main deep nuclei: dentate, interposed (a combination of 2 small nuclei), & fastigial
14/Fastigial is the most medial. You can remember it’s mainly sensory bc fastigial sounds like fastidious, which means sensitive or picky.

Sensitive/sensory means most medial. Big role of fastigial is the sensory input from the vestibular system
15/Interposed is in between.

When you interpose yourself, you kind of insert yourself or intervene in an argument. You are interposed between the two sides.

That is exactly what the interposed nuclei are for—coordinating opposing muscles on the two sides of a motion
16/Last is the dentate nucleus. Dentate sounds like teeth & the dentate looks like teeth as well, with an irregular, almost jagged edge.

Your teeth are in your head, so the dentate is very involved in cognitive function (head = cognitive)
17/So now you know the functional anatomy of the cerebellum—the homunculus, the functional topology, and organization of the nuclei.

So when it comes to the “little brain,” your knowledge will be anything but little!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Dec 23
1/Does trying to figure out cochlear anatomy cause your head to spiral?

Hungry for some help?

Here’s a thread to help you untwist cochlear CT anatomy w/food analogies! Image
2/On axial temporal bone CT, you cannot see the whole cochlea at once. So let’s start at the bottom.

The first thing you come to is the basal turn of the cochlea (makes sense, basal=bottom). On axial images, it looks like a banana. I remember both Basal and Banana start w/B. Image
3/As you move up to the next slice, you start to see the upper turns of the cochlea coming in above the basal turn. They look like a stack of pancakes.

Pancakes are the heart of any breakfast, so they are at the heart or middle of the cochlea on imaging. Image
Read 9 tweets
Dec 19
1/Talk about dangerous liaisons!

Abnormal brain vascular connections like a dural arteriovenous fistula (dural AVF) can be dangerous!

This month’s @theAJNR SCANtastic thread is here to you some durable knowledge about dural AVFs!

ajnr.org/content/45/12/…Image
2/Dural sinuses sit inside dural leaflets.

Arteries that feed the dura also feed the walls of sinuses, like vasa vasorum.

Arteries in the walls of veins are a natural connection between the veins and arteries—but these connections are usually closed in normal pts. Image
3/Whether these connections are open depends on pressure.

Like a hose w/a hole in it, at normal pressures, abnormal connections are not open.

But if pressure is increased w/thrombosis or stenosis, the connections open, like high pressure water squirting out through a hole. Image
Read 18 tweets
Dec 6
1/Time to FESS up! Do you understand functional endoscopic sinus surgery (FESS)?

If you read sinus CTs, you better know what the surgeon is doing or you won’t know what you’re doing!

Here’s a thread to make sure you always make the important findings! Image
2/The first step is to insert the endoscope into the nasal cavity.

The first two structures encountered are the nasal septum and the inferior turbinate. Image
3/So on every sinus CT you read, the first question is whether there is enough room to insert the scope.

Will it go in smoothly or will it be a tight fit? Image
Read 19 tweets
Dec 2
1/Ready for a throw down?

MMA fights get a lot of attention, but MMA (middle meningeal art) & dural blood supply doesn’t get the attention it deserves.

A thread on dural vascular anatomy! Image
2/Everyone knows about the blood supply to the brain.

Circle of Willis anatomy is king and loved by everyone, while the vascular anatomy of the blood supply to the dura is the poor, wicked step child of vascular anatomy that is often forgotten Image
3/But dural vascular anatomy & supply are important, especially now that MMA embolizations are commonly for chronic recurrent subdurals.

It also important for understanding dural arteriovenous fistulas as well. Image
Read 17 tweets
Nov 27
1/Controversy in radiology can get tense!

The Mt Fuji sign for tension pnemocephalus is under scrutiny. When should you call it?

A thread about imaging this important neurosurgery complication Image
2/First, let’s clarify about what the Mt Fuji sign actually is

Most are familiar with the fact that large collections of pneumocephalus can compress the frontal lobes—making them look like the slopes of a mountain

But this isn’t actually enough to call Mt Fuji. Image
3/You also need to see frontal lobe separation

This means subdural air tension > the CSF surface tension between the frontal lobes

Water has one of the highest liquid surface tensions—so means pressure is high

This little V is why it looks like Mt Fuji, not any mountain Image
Read 9 tweets
Nov 25
1/The medulla is anything but DULL!

Does seeing an infarct in the medulla cause your heart to skip a beat?

Does medullary anatomy send you into respiratory arrest?

Never fear, here is a thread on the major medullary syndromes! Image
2/The medulla is like a toll road.

Everything going down into the cord must pass through the medulla & everything from the cord going back up to the brain must too.

That’s a lot of tracts for a very small territory. Luckily you don’t need to know every tract Image
3/Medulla has 4 main vascular territories, spread out like a fan: anteromedial, anterolateral, lateral, and posterior.

You don’t need to remember their names, just the territory they cover—and I’ll show you how Image
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(