Lea Alhilali, MD Profile picture
Feb 16, 2023 17 tweets 6 min read Read on X
1/Your baby’s all grown up! Cerebellum may mean “little cerebrum” but its jobs are anything but little

Do you know cerebellar anatomy beyond vermis & hemispheres?

Here’s a #tweetorial about the functional #anatomy of the cerebellum!
#medtwitter #neurotwitter #neurorad #meded Image
2/Cerebellum means “little cerebrum” or “little brain” bc it looks like a mini brain--a mini me to the cerebrum one might say.

However, it does not play a mini role. In fact, despite being significantly smaller than the cerebrum, it contains as many neurons as the cerebrum
3/When most people think of cerebellar function, they think of balance. And the first thing that comes to mind with cerebellar dysfunction is imbalance & dizziness.

However, the cerebellum is involved in much more, including cognitive functions
4/The cerebellum is divided into anterior & posterior lobes by the primary fissure. Then, along its undersurface is the flocculonodular lobe.

I think this anatomy looks like a dog with his tongue sticking out—the tongue being the flocculonodular lobe
5/Cerebellum has a homunculus. In fact, it has 2!

It has a primary homunculus in along the top of the anterior lobe & a secondary homunculus along the bottom of the posterior lobe—like a reflection of the primary homunculus along the bottom of the cerebellum
6/Cerebellar homunculus looks like 2 gymnasts spread over the top and bottom of the cerebellum.

You have to picture their arms going out laterally, because the homunculus of the cerebellum also spreads out from midline.
7/How to remember which way the gymnasts are facing?

Well, just like the homunculus in the cerebrum, the feet/legs hang over the edge.

So the feet of the cerebellar homunculus are dangling over the edge towards the fourth ventricle
8/Cerebellum is involved in a variety of functions. The functional regions are organized in a gradient.

Most medial regions are for sensory, slightly more lateral for motor, & finally most lateral is for cognitive functions. Bet you didn’t know your little brain was thinking!
9/This distribution actually reflects the evolution of the cerebellum.

As species evolved & the frontal cortex/cognitive functions became more pronounced, the lateral hemispheres of the cerebellum enlarged too—helping to serve these new cognitive functions
10/You can remember this distribution by thinking of the midline as home.

For sensory, you can only sense things close by (touch close by things, see things only in your line of sight).

Thus, sensory doesn’t take you far from home—you have to stay close (medial)
11/With motor functions (ie, walking, running), you can get a little bit away from home. You can run away—but you don’t get too far. There is only so far you can run!

So motor functions are slightly removed from midline
12/Finally is cognitive. With your mind, you can transport yourself anywhere—you can dream of places very far away from home.

So cognitive functions are the farthest removed from home—they are the most lateral
13/This gradient of sensorimotor function being more medial & cognitive functions being more lateral persists for the deep cerebellar nuclei.

There are three main deep nuclei: dentate, interposed (a combination of 2 small nuclei), & fastigial
14/Fastigial is the most medial. You can remember it’s mainly sensory bc fastigial sounds like fastidious, which means sensitive or picky.

Sensitive/sensory means most medial. Big role of fastigial is the sensory input from the vestibular system
15/Interposed is in between.

When you interpose yourself, you kind of insert yourself or intervene in an argument. You are interposed between the two sides.

That is exactly what the interposed nuclei are for—coordinating opposing muscles on the two sides of a motion
16/Last is the dentate nucleus. Dentate sounds like teeth & the dentate looks like teeth as well, with an irregular, almost jagged edge.

Your teeth are in your head, so the dentate is very involved in cognitive function (head = cognitive)
17/So now you know the functional anatomy of the cerebellum—the homunculus, the functional topology, and organization of the nuclei.

So when it comes to the “little brain,” your knowledge will be anything but little!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Mar 3
1/Does PTERYGOPALATINE FOSSA anatomy feel as confusing as its spelling?

Does it seem to have as many openings as letters in its name?

Are you pterrified of the pterygopalatine fossa (PPF)?

Let this thread on PPF anatomy help you out. Image
2/The PPF is a crossroads between the skullbase & the extracranial head and neck

There are 4 main regions that meet here:

(1) Skullbase itself posteriorly, (2) nasal cavity medially, (3) infratemporal fossa laterally, and (4) orbit anteriorly. Image
3/At its most basic, you can think of the PPF as a room with 4 doors opening to each of these regions: one posteriorly to the skullbase, one medially to the nasal cavity, one laterally to the infratemporal fossa, and one anteriorly to the orbit Image
Read 18 tweets
Feb 28
1/Feel like a fish out of water when it comes to water on the brain?

Read on for this month’s @Radiographics summary of what you need to know about hydrocephalus!!



@cookyscan1 @RadG_editor #RGphx doi.org/10.1148/rg.240…Image
2/To understand hydrocephalus, think of CSF like the flow of traffic

3 main ways traffic backs up:

(1) Obstruction on the road:
For hydrocephalus, this is an obstruction along CSF in the ventricle Image
3/

(2) Obstruction of an off ramp
For hydrocephalus=obstruction at its off ramp into the venous system

(3) Rush hour
For hydrocephalus=over production Image
Read 8 tweets
Feb 27
1/Do scans for dizziness make your head spin?

Need to know what to look for?

Just hear me out!

This month’s @theAJNR SCANtastic will show what to look for:

ajnr.org/content/46/2/3…Image
2/I always remember the rhyme of the big three for dizz-ee!

First, are vestibular schwannomas

These give an ice cream cone shape in the internal auditory canal! So scoop up that finding! Image
3/Next is labyrinthitis

Labyrinthitis can look like night & day, depending on the timing

Late labyrinthitis is dark—loss of bright fluid signal on FIESTA

Early labyrinthitis is bright—enhances on post-contrast Image
Read 12 tweets
Feb 26
1/Time is brain! But what time is it?

If you don’t know the time of stroke onset, are you able to deduce it from imaging?

Here’s a thread to help you date a stroke on MRI! Image
2/Strokes evolve, or grow old, the same way people evolve or grow old

The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person

So 15 day old stroke has features of a 15 year old person, etc. Image
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI)

You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted

So early/newly born stroke is like a baby, only restricted Image
Read 10 tweets
Feb 25
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Feb 24
1/”That’s a ninja turtle looking at me!” I exclaimed. My fellow rolled his eyes at me, “Why do I feel I’m going to see this a thread on this soon…”

He was right! A thread about one of my favorite imaging findings & pathology behind it Image
2/Now the ninja turtle isn’t an actual sign—yet!

But I am hoping to make it go viral as one. To understand what this ninja turtle is, you have to know the anatomy.

I have always thought the medulla looks like a 3 leaf clover in this region.

The most medial bump of the clover is the medullary pyramid (motor fibers).

Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.

Now you can see that the ninja turtle eyes correspond to the ION.Image
3/But why are IONs large & bright in our ninja turtle?

This is hypertrophic olivary degeneration.

It is how ION degenerates when input to it is disrupted. Input to ION comes from a circuit called the triangle of Guillain & Mollaret—which sounds like a fine French wine label! Image
Read 9 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(