How does a young dust grain survive the rigors of space and find its destiny? You decide! Below, choose a path for the dust grain and discover the adventures and perils that await! Results for the next step tomorrow. #DestinyofDust Image
START: Your story begins with two stars orbiting each other. The more massive star is super-hot and nearing the end of its lifecycle. Strong winds from the stars collide and cool, and you find yourself surrounded by sibling grains of dust swirling. ImageImage
The adventure begins! What do we want to do? You decide, vote now! #DestinyofDust
You've decided to stay and see a supernova!

The shockwave tears through your dust cloud, rocketing you out to interstellar space. You survive intact, but smaller dust grains are destroyed, and the new environment feels strange.

What do you do next? ⬇️ #DestinyOfDust Image
Do you ride another supernova shockwave to get somewhere new?

Yes: Keep Exploring! Get swept up with other dust created by the supernova, landing near a young star.

No: Not up for another bumpy ride! Gravity draws you toward a supermassive black hole.

Decide below! ⬇️
Ride another supernova shockwave to get somewhere new? #DestinyOfDust
You've decided to get swept up with other dust created by the supernova, landing near a young star. This new star is more stable than your parent star. You and fellow dust grains settle in orbit, more dust joins.

How much dust would like to clump together with? ⬇️ #DestinyOfDust
How much dust would like to clump together with in this smaller and more stable young star?

1) Not too much
2) The ore the better!
3) None

Choose your answer in the poll below! ⬇️ #DestinyOfDust ImageImageImage
How much dust would like to clump together with in this smaller and more stable young star?
You have chosen to clump together with lots of dust at the new young star!

Time to find out what you and your fellow dust grains have created! ⬇️ #DestinyOfDust
You build a huge dust community and grow into a GAS GIANT PLANET. Many smaller rocky worlds are attracted by your strong gravity, forming moons and rings around you.

Though you don’t glow as brightly as the star, you command your own small planetary system! #DestinyOfDust Image
Want to play #DestinyOfDust at home? You can download the graphic and choose your own path. webbtelescope.org/contents/media…

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Space Telescope Science Institute

Space Telescope Science Institute Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @SpaceTelescope

Dec 8, 2022
How did up to five stars create the Southern Ring Nebula? Let’s hit “rewind” and replay the interactions that might have created the scene! (1/9) 🧵 A tight cropping of the Sou...
Stars 1 and 2 are the only stars we see in the sixth and final panel above—and in #NASAWebb’s images. The remaining “guests” are stars 3, 4, and 5. They are all much less massive, or far smaller and dimmer, than stars 1 and 2. (2/9) This six-panel illustration...
We start with a wider field. Star 1, the most massive, is the fastest to age and responsible for creating the planetary nebula. Star 2 very slowly orbits star 1. All is relatively quiet. Star 5 orbits star 1 far more tightly. (3/9) In panel 1, a reddish star ...
Read 9 tweets
Aug 25, 2022
BREAKING NEWS: #NASAWebb ushers in a new era of exoplanet science with the first unequivocal detection of CARBON DIOXIDE in a planetary atmosphere outside our solar system. (1/5) 🧵 This illustration shows wha...
After years of preparation and anticipation, exoplanet researchers are ecstatic! The James Webb Space Telescope has captured an astonishingly detailed rainbow of near-infrared starlight filtered through the atmosphere of a hot gas giant 700 light-years away. (2/5)
The transmission spectrum of exoplanet WASP-39 b, based on a single set of measurements made using Webb’s Near-Infrared Spectrograph and analyzed by dozens of scientists, represents a hat trick of firsts ⬇️. (3/5)
Read 5 tweets
Jul 8, 2022
#NASAWebb will soon reveal unprecedented and detailed views of the universe, with the upcoming release of its first full-color images and spectroscopic data! Below is the list of objects that Webb targeted for these first observations, which will be released on July 12. (1/8) An illustration of the James Webb Space Telescope in space,
Carina Nebula: One of the largest and brightest nebulae in the sky, located approximately 7,600 light-years away in the southern constellation Carina. Nebulae are stellar nurseries where stars form. The Carina Nebula is home to many massive stars. (2/8)
WASP-96b (spectrum): A giant planet outside our solar system, composed mainly of gas. The planet, located nearly 1,150 light-years from Earth, orbits its star every 3.4 days. It has about half the mass of Jupiter, and its discovery was announced in 2014. (3/8)
Read 8 tweets
Jul 7, 2022
Bright stars create unique patterns called diffraction spikes, which are produced as light bends around the sharp edges of a telescope. Most reflecting telescopes—including #NASAWebb—show spikes as light interacts with the primary mirror and struts that support the mirror. (1/5) Diagram labeled “Webb’s Diffraction Spikes.” The top r
Light—which has wave-like properties—tends to radiate from a point outward. When light waves interact, they can either become more amplified or cancel each other out. These areas of amplification and cancellation form the light and dark spots in diffraction patterns. (2/5) Diagram headlined “How Does Diffraction Happen?” Underne
Primary mirrors in reflecting telescopes cause light waves to interact as they direct light to the secondary mirror. So, even if a telescope had no struts, it would still create a diffraction pattern. The shape of the mirror and any edges it has determine its pattern. (3/5) Diagram headlined, “Primary Mirror Influence.” Below thi
Read 5 tweets
Apr 27, 2022
#NASAWebb will revolutionize our understanding of the lifecycles of stars, starting at the very beginning. Protostars like HH 47 eject light-year-long jets even while accumulating the hydrogen needed to begin nuclear fusion and shine. (1/4)

Credit: NASA. Image
With its powerful infrared sensitivity and resolution, #NASAWebb is capable of peering into star-forming regions across our entire galaxy—like R136—where previous infrared telescopes were limited to dust clouds within our own galactic neighborhood. (2/4)

Credit: NASA/ESA. Image
Sunlike stars end their lives by gently ejecting their outer layers to form what’s known as a planetary nebula. #NASAWebb will look at NGC 6302 and nebulas like it to learn how chemical elements are recycled throughout our galaxy. (3/4)

Credit: NASA/ESA. Image
Read 4 tweets
Mar 18, 2022
Who is ready to be “thrown” through a loop? A supermassive black hole’s feedback loop to be exact! Decoder: In these images, RED indicates COLD and TEAL indicates HOT. (1/7)
Supermassive black holes, which lie at the centers of galaxies, are voracious! They periodically “sip” or “gulp” from COLD swirling disks of gas and dust that orbit them. Where there’s lots of very cold gas, stars can begin to form—but it also falls onto the black hole. (2/7)
As a result of “nom, nom, noming” on all that delicious cold gas, supermassive black holes launch outflows in the form of radiation, jets, and wind! (It’s gettin’ hot in here!) (3/7)
Read 7 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(